Infrared Evanescent Wave Sensing Based on a Ge10As30Se40Te20 Fiber for Alcohol Detection
<p>Principle of infrared fiber evanescent wave sensing. The total reflection of light occurs at the fiber interface, and the generated evanescent wave resonates with the chemical bond of the external liquid to output the evanescent wave absorption spectrum, which can be analyzed.</p> "> Figure 2
<p>Diagram of sensor preparation. (<b>a</b>) Tapered platform with steppers and heat block. (<b>b</b>) Tapered fiber with different <span class="html-italic">d</span><sub>w</sub> = 110, 63, and 31 μm. (<b>c</b>) Packaged sensor.</p> "> Figure 3
<p>Diagram of liquid sensing platform.</p> "> Figure 4
<p>Modes and evanescent wave intensity in fibers with different diameters. Fundamental mode in fiber with a diameter of (<b>a</b>)100 μm, (<b>b</b>) 60 μm, and (<b>c</b>) 30 μm. (<b>d</b>) Energy distribution on the axis of the cross-section. (<b>e</b>) Evanescent wave intensity at the interface. The dashed lines represent the boundary positions of different fibers located at 25, 30, and 50 μm.</p> "> Figure 5
<p>Transmission spectrum and loss spectrum of GAST glass and fiber, respectively. (<b>a</b>) Infrared transmission spectrum of GAST glass from 1.5 to 25 μm. Inset shows the polished sample with a thickness of 1.5 mm. (<b>b</b>) Loss spectrum of the optical fiber tested by the cut-off method. Inset is the end face of the fiber.</p> "> Figure 6
<p>SEM-EDS results of the fiber end face. (<b>a</b>) The SEM of the fiber end without the PPSU layer. (<b>b</b>) Distribution of Ge, As, Se, and Te in the fiber end.</p> "> Figure 7
<p>Sensing performance of sensors. Ethanol sensing results of fiber with (<b>a</b>) <span class="html-italic">d</span><sub>w</sub> = 110 μm, (<b>b</b>) <span class="html-italic">d</span><sub>w</sub> = 63 μm, and (<b>c</b>) <span class="html-italic">d</span><sub>w</sub> = 31 μm. (<b>d</b>) Sensitivities of different fiber sensors fitted by area of absorption peaks at 1047 and 1088 cm<sup>−1</sup>. (<b>e</b>) Schematics of tapered fibers with different <span class="html-italic">d</span><sub>w</sub>. Red peaks represent evanescent wave absorption spectra of 50 vol.% ethanol solution detected by fibers of different <span class="html-italic">d</span><sub>w</sub>.</p> "> Figure 8
<p>The application for alcohol detection. (<b>a</b>) Evanescent wave absorption spectra of seven alcohols, in which ethanol, water, and carbon dioxide can be detected. (<b>b</b>) Absorption spectra of alcohols in fingerprint area. (<b>c</b>) Ethanol concentrations measured in alcohols using a fitted sensitivity curve. (<b>d</b>) Characteristic absorption peaks in the beer, showing the existence of maltose.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Ge10As30Se40Te20 Fiber
2.2. Preparation and Encapsulation of Tapered Fiber
2.3. Construction of Sensing Device
2.4. Preparation of Liquid Samples
3. Results and Discussion
3.1. Simulation of Fibers with Different Diameters
3.2. Properties of GAST Glass and Fiber
3.3. Sensing Performance of Fibers with Different dw
3.4. Detection of Ethanol in Alcohols
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Memon, S.F.; Wang, R.; Strunz, B.; Chowdhry, B.S.; Pembroke, J.T.; Lewis, E. A review of optical fibre ethanol sensors: Current state and future prospects. Sensors 2022, 22, 950. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Wang, Y.; Dai, Y.; Song, C.; Zhu, Q.; Qin, H.; Tan, F.; Chen, H.; Dai, L.; Hu, G.; et al. Current status and future prospective of bio-ethanol industry in China. Renew. Sustain. Energy Rev. 2021, 145, 111079. [Google Scholar] [CrossRef]
- Jiao, L.; Guo, Y.; Chen, J.; Zhao, X.; Dong, D. Detecting volatile compounds in food by open-path Fourier-transform infrared spectroscopy. Food Res. Int. 2019, 119, 968–973. [Google Scholar] [CrossRef]
- Weatherly, C.A.; Woods, R.M.; Armstrong, D.W. Rapid analysis of ethanol and water in commercial products using ionic liquid capillary gas chromatography with thermal conductivity detection and/or barrier discharge ionization detection. J. Agric. Food. Chem. 2014, 62, 1832–1838. [Google Scholar] [CrossRef]
- Castellari, M.; Sartini, E.; Spinabelli, U.; Riponi, C.; Galassi, S. Determination of carboxylic acids, carbohydrates, glycerol, ethanol, and 5-HMF in beer by high-performance liquid chromatography and UV-refractive index double detection. J. Chromatogr. Sci. 2001, 39, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Leite, A.I.N.; Pereira, C.G.; Andrade, J.; Vicentini, N.M.; Bell, M.J.V.; Anjos, V. FTIR-ATR spectroscopy as a tool for the rapid detection of adulterations in butter cheeses. LWT Food Sci. Technol. 2019, 109, 63–69. [Google Scholar] [CrossRef]
- Olsztynska-Janus, S.; Czarnecki, M.A. Effect of elevated temperature and UV radiation on molecular structure of linoleic acid by ATR-IR and two-dimensional correlation spectroscopy. Spectrochim. Acta Part A 2020, 238, 118436. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, M.; Wang, Y.; Peng, S.; Chen, Y.; Zhang, D.; Zhang, D.; Guo, Y.; Wang, X.; Luo, H.; et al. Fast screening and primary diagnosis of COVID-19 by ATR-FT-IR. Anal. Chem. 2021, 93, 2191–2199. [Google Scholar] [CrossRef]
- Su, W.H.; Sun, D.W. Mid-infrared (MIR) spectroscopy for quality analysis of liquid foods. Food Eng. Rev. 2019, 11, 142–158. [Google Scholar] [CrossRef]
- Guan, T.; Xu, Z.; Wang, J.; Liu, Y.; Shen, X.; Li, X.; Sun, Y.; Lei, H. Multiplex optical bioassays for food safety analysis: Toward on-site detection. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1627–1656. [Google Scholar] [CrossRef]
- Lopez-Torres, D.; Elosua, C.; Arregui, F.J. Optical Fiber sensors based on microstructured optical fibers to detect gases and volatile organic compounds—A review. Sensors 2020, 20, 2555. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.A.; Voronkov, G.S.; Grakhova, E.P.; Kutluyarov, R.V.; Kazanskiy, N.L.; Khonina, S.N. Environmental monitoring: A comprehensive review on optical waveguide and fiber-based sensors. Biosensors 2022, 12, 1038. [Google Scholar] [CrossRef] [PubMed]
- Gervillié-Mouravieff, C.; Boussard-Plédel, C.; Huang, J.; Leau, C.; Blanquer, L.A.; Yahia, M.B.; Doublet, M.L.; Boles, S.T.; Zhang, X.H.; Adam, J.L.; et al. Unlocking cell chemistry evolution with operando fibre optic infrared spectroscopy in commercial Na(Li)-ion batteries. Nat. Energy 2022, 7, 1157–1169. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, C.; Mao, B.; Chen, H.; Shen, C. Detection of aflatoxin B1 in food based on SMF taper combined with fiber loop ring down technique. IEEE Sens. J. 2020, 20, 2446–2451. [Google Scholar] [CrossRef]
- Noor, A.S.M.; Talah, A.; Rosli, M.A.A.; Thirunavakkarasu, P.; Tamchek, N. Increased sensitivity of Au-Pd nanolayer on tapered optical fiber sensor for detecting aqueous ethanol. J. Eur. Opt. Soc. Rapid Publ. 2017, 13, 28. [Google Scholar] [CrossRef]
- McDonagh, C.; Burke, C.S.; MacCraith, B.D. Optical Chemical Sensors. Chem. Rev. 2008, 108, 400–422. [Google Scholar] [CrossRef]
- Maurugeon, S.; Boussard-Pledel, C.; Troles, J.; Faber, A.J.; Lucas, P.; Zhang, X.H.; Lucas, J.; Bureau, B. Telluride Glass Step Index Fiber for the far Infrared. J. Light. Technol. 2010, 28, 3358–3363. [Google Scholar] [CrossRef]
- Kratz, C.; Furchner, A.; Sun, G.; Rappich, J.; Hinrichs, K. Sensing and structure analysis by in situ IR spectroscopy: From mL flow cells to microfluidic applications. J. Phys. Condens. Matter 2020, 32, 393002. [Google Scholar] [CrossRef]
- Liu, K.N.; Kang, Y.; Tao, H.Z.; Zhang, X.H.; Xu, Y.S. Effect of Se on structure and electrical properties of Ge-As-Te glass. Materials 2022, 15, 12. [Google Scholar] [CrossRef]
- Zhao, Z.-M.; Wu, B.; Liu, Y.-J.; Jiang, L.; Mi, N.; Wang, X.-S.; Liu, Z.-J.; Liu, S.; Pan, Z.-H.; Nie, Q.-H.; et al. Investigation on Ge-As-Se-Te chalcogenide glasses for far-infrared fiber. Acta Phys. Sin. 2016, 65, 124205. [Google Scholar] [CrossRef]
- Zhong, M.; Liang, X.; Jiao, K.; Wang, X.; Si, N.; Xu, T.; Xiao, J.; Liu, J.; Yang, P.; Zhao, Z.; et al. Low-loss chalcogenide fiber prepared by double peeled-off extrusion. J. Light. Technol. 2020, 38, 4533–4539. [Google Scholar] [CrossRef]
- Wang, W.C.; Zhou, B.; Xu, S.H.; Yang, Z.M.; Zhang, Q.Y. Recent advances in soft optical glass fiber and fiber lasers. Prog. Mater. Sci. 2019, 101, 90–171. [Google Scholar] [CrossRef]
- Vigreux-Bercovici, C.; Bonhomme, E.; Pradel, A. Te-rich Ge–As–Se–Te bulk glasses and films for future IR-integrated optics. J. Non-Cryst. Solids 2007, 353, 1388–1391. [Google Scholar] [CrossRef]
- Zhao, X.; Yao, N.; Zhang, X.; Zhang, L.; Tao, G.; Li, Z.; Liu, Q.; Zhao, X.; Xu, Y. Optimizing evanescent efficiency of chalcogenide tapered fiber. Materials 2022, 15, 3834. [Google Scholar] [CrossRef] [PubMed]
- Riahi, A.; Vahedi, M. Theoretical investigation of the effect of the geometry on the sensitivity of tapered-fiber sensors based on staircase concatenation method. J. Mod. Opt. 2022, 69, 283–289. [Google Scholar] [CrossRef]
- Wang, X.; Su, J.; Wang, Y.; Yang, C.; Dai, S.; Zhang, P. High-sensitivity sensing in bare Ge-Sb-Se chalcogenide tapered fiber with optimal structure parameters. J. Non-Cryst. Solids 2021, 559, 120686. [Google Scholar] [CrossRef]
- Walters, B.S.; Nielsen, T.J.; Arnold, M.A. Fiber-optic biosensor for ethanol, based on an internal enzyme concept. Talanta 1988, 35, 151–155. [Google Scholar] [CrossRef]
- Wolfbeis, O.S.; Posch, H.E. Optical sensors. Fresenius Z. Anal. Chem. 1988, 332, 255–257. [Google Scholar] [CrossRef]
- MacDonald, S.; Michel, K.; LeCoq, D.; Boussard-Plédel, C.; Bureau, B. Optical analysis of infrared spectra recorded with tapered chalcogenide glass fibers. Opt. Mater. 2004, 25, 171–178. [Google Scholar] [CrossRef]
- Wu, Z.H.; Xu, Y.S.; Qi, D.F.; Nie, Q.H.; Zhang, X.H. Progress in preparation and applications of Te-As-Se chalcogenide glasses and fibers. Infrared Phys. Technol. 2019, 102, 11. [Google Scholar] [CrossRef]
- Wang, M.; Yang, F.; Dai, S.; Cao, Z.; Su, J.; Ding, S.; Zhang, P. Effect of the geometries of Ge-Sb-Se chalcogenide glass tapered fiber on the sensitivity of evanescent wave sensors. J. Light. Technol. 2021, 39, 4828–4836. [Google Scholar] [CrossRef]
- Jiang, X.; Jha, A. Engineering of a Ge–Te–Se glass fibre evanescent wave spectroscopic (FEWS) mid-IR chemical sensor for the analysis of food and pharmaceutical products. Sens. Actuators B Chem. 2015, 206, 159–169. [Google Scholar] [CrossRef]
- Velmuzhov, A.P.; Shiryaev, V.S.; Sukhanov, M.V.; Kotereva, T.V.; Stepanov, B.S.; Snopatin, G.E. Mid-IR fiber-optic sensors based on especially pure Ge20Se80 and Ga10Ge15Te73I2 glasses. J. Non-Cryst. Solids 2022, 579, 121374. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, W.S.; Lee, Y.Y.; Choi, Y.S.; Choi, H.; Jang, H.W. Solid-phase microextraction Arrow for the volatile organic compounds in soy sauce. J. Sep. Sci. 2019, 42, 2942–2948. [Google Scholar] [CrossRef] [PubMed]
- Luo, B.; Wang, Y.; Sun, Y.n.; Dai, S.; Yang, P.; Zhang, P.; Wang, X.; Chen, F.; Wang, R. Fabrication and characterization of bare Ge-Sb-Se chalcogenide glass fiber taper. Infrared Phys. Technol. 2017, 80, 105–111. [Google Scholar] [CrossRef]
- Su, J.; Dai, S.; Gan, N. Optimized Ge-As-Se-Te chalcogenide glass fiber sensor with polydopamine-coated tapered zone for the highly sensitive detection of p-xylene in waters. Opt. Express 2020, 28, 184–193. [Google Scholar] [CrossRef]
- Plotnichenko, V.G.; Sokolov, V.O.; Kryukova, E.B.; Snopatin, G.E.; Skripachev, I.V.; Churbanov, M.F. Specifics of spectral loss measurement in infrared fibers. Appl. Opt. 2017, 56, 2112–2118. [Google Scholar] [CrossRef]
- Baker, C.; Rochette, M. A generalized heat-brush approach for precise control of the waist profile in fiber tapers. Opt. Mater. Express 2011, 1, 1065–1076. [Google Scholar] [CrossRef]
- Duarte, I.F.; Barros, A.; Almeida, C.; Spraul, M.; Gil, A.M. Multivariate analysis of NMR and FTIR data as a potential tool for the quality control of beer. J. Agric. Food. Chem. 2004, 52, 1031–1038. [Google Scholar] [CrossRef]
- Polshin, E.; Aernouts, B.; Saeys, W.; Delvaux, F.; Delvaux, F.R.; Saison, D.; Hertog, M.; Nicolai, B.M.; Lammertyn, J. Beer quality screening by FT-IR spectrometry: Impact of measurement strategies, data pre-processings and variable selection algorithms. J. Food Eng. 2011, 106, 188–198. [Google Scholar] [CrossRef]
Element | Nominal Composition (mol.%) | Measured Composition (mol.%) | Δ (mol.%) |
---|---|---|---|
Ge | 10 | 10.1 | 0.1 |
As | 30 | 29.8 | 0.2 |
Se | 40 | 39.9 | 0.1 |
Te | 20 | 20.2 | 0.2 |
Alcohols | Measured (vol.%) | Calibrated (vol.%) | Δ (vol.%) |
---|---|---|---|
Chinese baijiu A | 52.4 | 54 | 1.6 |
Chinese baijiu B | 42.5 | 42 | 0.5 |
Chinese baijiu C | 39.1 | 40 | 0.8 |
Red wine | 12.4 | 12.5 | 0.1 |
Shaoxing wine | 9.9 | 10.5 | 0.6 |
Tsingtao beer | 3.3 | 3.1 | 0.2 |
Rio cocktail | 3.1 | 3 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zhao, Y.; You, T.; Zhu, J.; Xia, M.; Lu, P.; Zhang, X.; Xu, Y. Infrared Evanescent Wave Sensing Based on a Ge10As30Se40Te20 Fiber for Alcohol Detection. Sensors 2023, 23, 4841. https://doi.org/10.3390/s23104841
Li Z, Zhao Y, You T, Zhu J, Xia M, Lu P, Zhang X, Xu Y. Infrared Evanescent Wave Sensing Based on a Ge10As30Se40Te20 Fiber for Alcohol Detection. Sensors. 2023; 23(10):4841. https://doi.org/10.3390/s23104841
Chicago/Turabian StyleLi, Zijian, Yongkun Zhao, Tianxiang You, Jihong Zhu, Mengling Xia, Ping Lu, Xianghua Zhang, and Yinsheng Xu. 2023. "Infrared Evanescent Wave Sensing Based on a Ge10As30Se40Te20 Fiber for Alcohol Detection" Sensors 23, no. 10: 4841. https://doi.org/10.3390/s23104841
APA StyleLi, Z., Zhao, Y., You, T., Zhu, J., Xia, M., Lu, P., Zhang, X., & Xu, Y. (2023). Infrared Evanescent Wave Sensing Based on a Ge10As30Se40Te20 Fiber for Alcohol Detection. Sensors, 23(10), 4841. https://doi.org/10.3390/s23104841