Sequential Fusion Filter for State Estimation of Nonlinear Multi-Sensor Systems with Cross-Correlated Noise and Packet Dropout Compensation
<p>Measurement error of sensor 1 in the case of packet dropout and compensation mechanism with <math display="inline"><semantics> <mrow> <msubsup> <mi>p</mi> <mrow> <mi>k</mi> </mrow> <mn>1</mn> </msubsup> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>Innovation variance of two local filters with <math display="inline"><semantics> <mrow> <msubsup> <mi>p</mi> <mrow> <mi>k</mi> </mrow> <mn>1</mn> </msubsup> <mo>=</mo> <mn>0.4</mn> <mo>,</mo> <msubsup> <mi>p</mi> <mrow> <mi>k</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>Comparison of the algorithm of this paper and EKF with <math display="inline"><semantics> <mrow> <msubsup> <mi>p</mi> <mrow> <mi>k</mi> </mrow> <mn>1</mn> </msubsup> <mo>=</mo> <mn>0.4</mn> <mo>,</mo> <msubsup> <mi>p</mi> <mrow> <mi>k</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Error of proposed algorithm and EKF with <math display="inline"><semantics> <mrow> <msubsup> <mi>p</mi> <mrow> <mi>k</mi> </mrow> <mn>1</mn> </msubsup> <mo>=</mo> <mn>0.4</mn> <mo>,</mo> <msubsup> <mi>p</mi> <mrow> <mi>k</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>RMSE of proposed algorithm and EKF with <math display="inline"><semantics> <mrow> <msubsup> <mi>p</mi> <mrow> <mi>k</mi> </mrow> <mn>1</mn> </msubsup> <mo>=</mo> <mn>0.4</mn> <mo>,</mo> <msubsup> <mi>p</mi> <mrow> <mi>k</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Error of partial sensors fusion and all sensors fusion with <math display="inline"><semantics> <mrow> <msubsup> <mi>p</mi> <mrow> <mi>k</mi> </mrow> <mn>1</mn> </msubsup> <mo>=</mo> <mn>0.4</mn> <mo>,</mo> <msubsup> <mi>p</mi> <mrow> <mi>k</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>.</p> "> Figure 7
<p>RMSE of partial sensors fusion and all sensors fusion with <math display="inline"><semantics> <mrow> <msubsup> <mi>p</mi> <mrow> <mi>k</mi> </mrow> <mn>1</mn> </msubsup> <mo>=</mo> <mn>0.4</mn> <mo>,</mo> <msubsup> <mi>p</mi> <mrow> <mi>k</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Problem Statement
3. Design of Sequential Filter for Nonlinear Multi-Sensor with Correlated Noise and Dropout Packet Compensation
Algorithm 1: Iterative steps of the sequential fusion algorithm |
|
4. Numerical Implementation Based on the Third-Degree Spherical-Radial Cubature Rule
4.1. Estimation Calculation of Observation Noise
4.2. Estimation Calculation of System State
4.3. One-Step Prediction Estimate and One-Step Prediction Covariance Matrix of State
5. Simulation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. System Sequential Fusion State Estimation with Correlated Noise and Packet Dropout Compensation
Appendix A.2. Observed Noise Estimation Based on Sequential Fusion with Cross-Correlated Noise and Packet Dropout Compensation
References
- Li, W.; Xiong, K.; Jia, Y.; Du, J. Distributed Kalman filter for multitarget tracking systems with coupled measurements. IEEE Trans. Syst. Man Cybern. Syst. 2020, 51, 6599–6604. [Google Scholar] [CrossRef]
- Mangiacapra, G.; Wittal, M.; Capello, E.; Nazari, M. Unscented Kalman filter and control on TSE (3) with application to spacecraft dynamics. Nonlinear Dyn. 2022, 108, 2127–2146. [Google Scholar] [CrossRef]
- Li, K.; Zhou, G. State estimation with a destination constraint imposed by proportional navigation guidance law. IEEE Trans. Aerosp. Electron. Syst. 2021, 58, 58–73. [Google Scholar] [CrossRef]
- Qi, B.; Sun, S. Optimal filtering of multi-sensor networked systems with unknown channel interferences and compensation of packet losses. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 2172–2176. [Google Scholar]
- Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. Mar. 1960, 82, 35–45. [Google Scholar] [CrossRef]
- Bar-Shalom, Y.; Li, X.R.; Kirubarajan, T. Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Ravn, O.; Nørgaard, M.; Poulsen, N. New developments in state estimations for nonlinear systems. Automatica 2000, 36, 1627–1638. [Google Scholar]
- Ito, K.; Xiong, K. Gaussian filters for nonlinear filtering problems. IEEE Trans. Autom. Control 2000, 45, 910–927. [Google Scholar] [CrossRef]
- Wan, E.A.; Van Der Merwe, R. The unscented Kalman filter. In Kalman Filtering and Neural Networks; Wiley: Hoboken, NJ, USA, 2001; pp. 221–280. [Google Scholar]
- Arasaratnam, I.; Haykin, S. Cubature kalman filters. IEEE Trans. Autom. Control 2009, 54, 1254–1269. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, D.; Wu, M.; Hu, X. A numerical-integration perspective on Gaussian filters. IEEE Trans. Signal Process. 2006, 54, 2910–2921. [Google Scholar] [CrossRef]
- Arasaratnam, I.; Haykin, S.; Hurd, T.R. Cubature Kalman filtering for continuous-discrete systems: Theory and simulations. IEEE Trans. Signal Process. 2010, 58, 4977–4993. [Google Scholar] [CrossRef]
- Doucet, A.; Godsill, S.; Andrieu, C. On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 2000, 10, 197–208. [Google Scholar] [CrossRef]
- Mukherjee, M.; Banerjee, A.; Papadimitriou, A.; Mansouri, S.S.; Nikolakopoulos, G. A decentralized sensor fusion scheme for multi sensorial fault resilient pose estimation. Sensors 2021, 21, 8259. [Google Scholar] [CrossRef] [PubMed]
- Abu Bakr, M.; Lee, S. Distributed multisensor data fusion under unknown correlation and data inconsistency. Sensors 2017, 17, 2472. [Google Scholar] [CrossRef] [PubMed]
- Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J. Centralized, distributed and sequential fusion estimation from uncertain outputs with correlation between sensor noises and signal. Int. J. Gen. Syst. 2019, 48, 713–737. [Google Scholar] [CrossRef]
- Liu, M.L.; Lin, R.; Huo, J.W.; Tan, L.G.; Ling, Q.; Zybin, E.Y. Design of Distributed Fusion Predictor and Filter without Feedback for Nonlinear System with Correlated Noises and Random Parameter Matrices. Meas. Sci. Rev. 2022, 22, 17–31. [Google Scholar] [CrossRef]
- Tan, L.G.; Xu, C.; Wang, Y.F.; Wei, H.N.; Zhao, K.; Song, S.M. Gaussian recursive filter for nonlinear systems with finite-step correlated noises and packet dropout compensations. Meas. Sci. Rev. 2020, 20, 80–92. [Google Scholar] [CrossRef]
- Yan, L.; Li, X.R.; Xia, Y.; Fu, M. Optimal sequential and distributed fusion for state estimation in cross-correlated noise. Automatica 2013, 49, 3607–3612. [Google Scholar] [CrossRef]
- Lin, H.; Sun, S. Distributed fusion estimation for multi-sensor non-uniform sampling systems with correlated noises and packet dropouts. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Xi’an, China, 10–13 July 2017; pp. 5485–5789. [Google Scholar]
- Lin, H.; Sun, S. Globally optimal sequential and distributed fusion state estimation for multi-sensor systems with cross-correlated noises. Automatica 2019, 101, 128–137. [Google Scholar] [CrossRef]
- Wang, J.; Hao, G.; Li, Y.; Zhao, M.; Li, H. Multi-sensor information fusion cubature Kalman filter for nonlinear system. In Proceedings of the 2019 Chinese Control And Decision Conference (CCDC), Nanchang, China, 3–5 June 2019; pp. 857–862. [Google Scholar]
- Yan, L.; Jiang, L.; Xia, Y.; Wu, Q.J. Event-triggered sequential fusion estimation with correlated noises. Isa Trans. 2020, 102, 154–163. [Google Scholar] [CrossRef]
- Cheng, G.R.; Ma, M.C.; Tan, L.G.; Song, S.M. Event-Triggered Sequential Fusion Filter for Nonlinear Multi-Sensor Systems with Correlated Noise Based on Observation Noise Estimation. IEEE Sens. J. 2022, 22, 8818–8829. [Google Scholar] [CrossRef]
- Lin, H.; Sun, S. Optimal sequential fusion estimation with stochastic parameter perturbations, fading measurements, and correlated noises. IEEE Trans. Signal Process. 2018, 66, 3571–3583. [Google Scholar] [CrossRef]
- Ma, J.; Sun, S. Optimal linear recursive estimators for stochastic uncertain systems with time-correlated additive noises and packet dropout compensations. Signal Process. 2020, 176, 107704. [Google Scholar] [CrossRef]
- Zhang, L.J.; Yang, L.X.; Guo, L.D.; Li, J. Optimal estimation for multiple packet dropouts systems based on measurement predictor. IEEE Sens. J. 2011, 11, 1943–1950. [Google Scholar] [CrossRef]
- Sun, S.-L. Optimal linear estimators for discrete-time systems with one-step random delays and multiple packet dropouts. Acta Autom. Sin. 2012, 38, 349–354. [Google Scholar]
- Zhao, K.; Tan, L.G.; Song, S.M. Fusion estimation for nonlinear multi-sensor networked systems with packet loss compensation and correlated noises. Sens. Rev. 2019, 39, 682–696. [Google Scholar] [CrossRef]
- Ma, J.; Sun, S. Linear estimators for networked systems with one-step random delay and multiple packet dropouts based on prediction compensation. IET Signal Process. 2017, 11, 197–204. [Google Scholar] [CrossRef]
- Zhao, K.; Tan, L.G.; Song, S.M. Gaussian filter for nonlinear networked systems with synchronously correlated noises and one-step randomly delayed measurements and multiple packet dropouts. IEEE Sens. J. 2019, 19, 9271–9281. [Google Scholar] [CrossRef]
, | , | , | , | |
---|---|---|---|---|
RMSE of CKF for partial sensor | 5.201001 | 4.479368 | 5.000045 | 5.231011 |
RMSE of CKF | 4.680037 | 3.822499 | 3.844220 | 4.195554 |
RMSE of EKF | 10.094846 | 10.010046 | 10.017550 | 10.166850 |
RMSE of CKF for partial sensor | 6.387763 | 6.003190 | 7.399094 |
RMSE of CKF | 5.967350 | 5.470605 | 7.035220 |
RMSE of EKF | 100.083639 | 28.344192 | 40.162560 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, L.; Wang, Y.; Hu, C.; Zhang, X.; Li, L.; Su, H. Sequential Fusion Filter for State Estimation of Nonlinear Multi-Sensor Systems with Cross-Correlated Noise and Packet Dropout Compensation. Sensors 2023, 23, 4687. https://doi.org/10.3390/s23104687
Tan L, Wang Y, Hu C, Zhang X, Li L, Su H. Sequential Fusion Filter for State Estimation of Nonlinear Multi-Sensor Systems with Cross-Correlated Noise and Packet Dropout Compensation. Sensors. 2023; 23(10):4687. https://doi.org/10.3390/s23104687
Chicago/Turabian StyleTan, Liguo, Yibo Wang, Changqing Hu, Xinbin Zhang, Liyi Li, and Haoxiang Su. 2023. "Sequential Fusion Filter for State Estimation of Nonlinear Multi-Sensor Systems with Cross-Correlated Noise and Packet Dropout Compensation" Sensors 23, no. 10: 4687. https://doi.org/10.3390/s23104687
APA StyleTan, L., Wang, Y., Hu, C., Zhang, X., Li, L., & Su, H. (2023). Sequential Fusion Filter for State Estimation of Nonlinear Multi-Sensor Systems with Cross-Correlated Noise and Packet Dropout Compensation. Sensors, 23(10), 4687. https://doi.org/10.3390/s23104687