An Intelligent System to Sense Textual Cues for Location Assistance in Autonomous Vehicles
<p>Schematic diagram of the proposed system.</p> "> Figure 2
<p>Textual candidates detection. (<b>a</b>,<b>b</b>) Original images. (<b>c</b>,<b>d</b>) Detected extremal regions.</p> "> Figure 3
<p>Textual candidates filtering. (<b>a</b>,<b>b</b>) non-textual objects filtered.</p> "> Figure 4
<p>Optimal textual candidates. (<b>a</b>,<b>b</b>) Filtered textual candidates.</p> "> Figure 5
<p>Keywords grouping using yellow bounding boxes.</p> "> Figure 6
<p>Recognized keywords in the outer environment. (<b>a</b>,<b>b</b>) Optimum bounding boxes. (<b>c</b>,<b>d</b>) Recognized keywords.</p> ">
Abstract
:1. Introduction
- A novel intelligent system is proposed for AVs to find unsupervised locations.
- The proposed system is capable of sensing the textual cues that appear in the outer environment for determining desired locations.
- The proposed system is a novel development in the list of ADAS features of an autonomous vehicle.
- With the proposed system, the driver’s efforts for finding the desired locations will drastically be decreased.
2. Proposed System
2.1. Textual Cues Detection
2.1.1. Textual Candidates Detection
2.1.2. Textual Candidates Filtering
2.1.3. Keywords Grouping and Recognition
- (1)
- The two adjacent textual candidates are associated with a new value.
- (2)
- The achieved keyword candidate which is the combination of two candidates is obtained with curvilinear.
2.2. Textual Cues Keywords
2.3. Similarity Learning
3. Experimental Results and Discussion
3.1. Datasets
3.2. Evaluation Measures
3.2.1. Textual Cues Evaluation
3.2.2. Location Retrieval Evaluation
3.3. Implementation Results
3.3.1. Textual Cues Detection
3.3.2. Locations Retrieval
3.3.3. Retrieval Time Comparison
3.4. Results Impact and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Chen, H.; Waslander, S.L.; Yang, T.; Zhang, S.; Xiong, G.; Liu, K. Toward a More Complete, Flexible, and Safer Speed Planning for Autonomous Driving via Convex Optimization. Sensors 2018, 18, 2185. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ruan, R.; Zhou, Z.; Sun, A.; Luo, X. Positioning of Unmanned Underwater Vehicle Based on Autonomous Tracking Buoy. Sensors 2023, 23, 4398. [Google Scholar] [CrossRef]
- Bayoudh, K.; Hamdaoui, F.; Mtibaa, A. Transfer Learning Based Hybrid 2D-3D CNN for Traffic Sign Recognition and Semantic Road Detection Applied in Advanced Driver Assistance Systems. Appl. Intell. 2021, 51, 124–142. [Google Scholar] [CrossRef]
- Cheng, H.Y.; Yu, C.C.; Lin, C.L.; Shih, H.C.; Kuo, C.W. Ego-Lane Position Identification with Event Warning Applications. IEEE Access 2019, 7, 14378–14386. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, S.; Yin, X.; Li, X.; Tang, S. Research into Autonomous Vehicles Following and Obstacle Avoidance Based on Deep Reinforcement Learning Method under Map Constraints. Sensors 2023, 23, 844. [Google Scholar] [CrossRef]
- Gragnaniello, D.; Greco, A.; Saggese, A.; Vento, M.; Vicinanza, A. Benchmarking 2D Multi-Object Detection and Tracking Algorithms in Autonomous Vehicle Driving Scenarios. Sensors 2023, 23, 4024. [Google Scholar] [CrossRef]
- Park, J.; Cho, J.; Lee, S.; Bak, S.; Kim, Y. An Automotive LiDAR Performance Test Method in Dynamic Driving Conditions. Sensors 2023, 23, 3892. [Google Scholar] [CrossRef]
- Giulietti, F.; Dahia, K.; Statheros, T.; Innocente, M.; Li, S.; Frey, M.; Gauterin, F. Model-Based Condition Monitoring of the Sensors and Actuators of an Electric and Automated Vehicle. Sensors 2023, 23, 887. [Google Scholar] [CrossRef]
- Kukkala, V.K.; Tunnell, J.; Pasricha, S.; Bradley, T. Advanced Driver-Assistance Systems: A Path Toward Autonomous Vehicles. IEEE Consum. Electron. Mag. 2018, 7, 18–25. [Google Scholar] [CrossRef]
- Xia, X.; Hashemi, E.; Xiong, L.; Khajepour, A. Autonomous Vehicle Kinematics and Dynamics Synthesis for Sideslip Angle Estimation Based on Consensus Kalman Filter. IEEE Trans. Control Syst. Technol. 2023, 31, 179–192. [Google Scholar] [CrossRef]
- Tsai, J.; Chang, C.-C.; Li, T. Autonomous Driving Control Based on the Technique of Semantic Segmentation. Sensors 2023, 23, 895. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Xia, X.; Lu, Y.; Liu, W.; Gao, L.; Song, S.; Yu, Z. IMU-Based Automated Vehicle Body Sideslip Angle and Attitude Estimation Aided by GNSS Using Parallel Adaptive Kalman Filters. IEEE Trans. Veh. Technol. 2020, 69, 10668–10680. [Google Scholar] [CrossRef]
- Xia, X.; Xiong, L.; Huang, Y.; Lu, Y.; Gao, L.; Xu, N.; Yu, Z. Estimation on IMU Yaw Misalignment by Fusing Information of Automotive Onboard Sensors. Mech. Syst. Signal. Process 2022, 162, 107993. [Google Scholar] [CrossRef]
- Alghamdi, A.S.; Saeed, A.; Kamran, M.; Mursi, K.T.; Almukadi, W.S. Vehicle Classification Using Deep Feature Fusion and Genetic Algorithms. Electronics 2023, 12, 280. [Google Scholar] [CrossRef]
- Dauptain, X.; Koné, A.; Grolleau, D.; Cerezo, V.; Gennesseaux, M.; Do, M.T. Conception of a High-Level Perception and Localization System for Autonomous Driving. Sensors 2022, 22, 9661. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wei, Z.; Li, Y.; Jin, J.; Li, X. SEDG-Yolov5: A Lightweight Traffic Sign Detection Model Based on Knowledge Distillation. Electronics 2023, 12, 305. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, F.; Chang, S.; Liu, Y.; Wu, H.; Feng, Z. MmWave Radar and Vision Fusion for Object Detection in Autonomous Driving: A Review. Sensors 2022, 22, 2542. [Google Scholar] [CrossRef]
- Miao, L.; Chen, S.F.; Hsu, Y.L.; Hua, K.L. How Does C-V2X Help Autonomous Driving to Avoid Accidents? Sensors 2022, 22, 686. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Zhuang, Y.; Hu, H. A Novel Trail Detection and Scene Understanding Framework for a Quadrotor UAV with Monocular Vision. IEEE Sens. J. 2017, 17, 6778–6787. [Google Scholar] [CrossRef]
- Yang, S.; Wang, W.; Liu, C.; Deng, W. Scene Understanding in Deep Learning-Based End-to-End Controllers for Autonomous Vehicles. IEEE Trans. Syst. Man. Cybern. Syst. 2019, 49, 53–63. [Google Scholar] [CrossRef]
- Gao, Y.; Lin, C.; Zhao, Y.; Wang, X.; Wei, S.; Huang, Q. 3-D Surround View for Advanced Driver Assistance Systems. IEEE Trans. Intell. Transp. Syst. 2018, 19, 320–328. [Google Scholar] [CrossRef]
- Liu, W.; Quijano, K.; Crawford, M.M. YOLOv5-Tassel: Detecting Tassels in RGB UAV Imagery With Improved YOLOv5 Based on Transfer Learning. IEEE J. Sel. Top. Appl. Earth. Obs. Remote Sens. 2022, 15, 8085–8094. [Google Scholar] [CrossRef]
- Xia, X.; Meng, Z.; Han, X.; Li, H.; Tsukiji, T.; Xu, R.; Zheng, Z.; Ma, J. An Automated Driving Systems Data Acquisition and Analytics Platform. Transp. Res. Part C Emerg. Technol. 2023, 151, 104120. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, X.; Chen, Z.; Li, X. A Dynamic Cooperative Lane-Changing Model for Connected and Autonomous Vehicles with Possible Accelerations of a Preceding Vehicle. Expert Syst. Appl. 2021, 173, 114675. [Google Scholar] [CrossRef]
- Chen, K.; Yamaguchi, T.; Okuda, H.; Suzuki, T.; Guo, X. Realization and Evaluation of an Instructor-Like Assistance System for Collision Avoidance. IEEE Trans. Intell. Transp. Syst. 2021, 22, 2751–2760. [Google Scholar] [CrossRef]
- Gilbert, A.; Petrovic, D.; Pickering, J.E.; Warwick, K. Multi-Attribute Decision Making on Mitigating a Collision of an Autonomous Vehicle on Motorways. Expert Syst. Appl. 2021, 171, 114581. [Google Scholar] [CrossRef]
- Gao, L.; Xiong, L.; Xia, X.; Lu, Y.; Yu, Z.; Khajepour, A. Improved Vehicle Localization Using On-Board Sensors and Vehicle Lateral Velocity. IEEE Sens. J. 2022, 22, 6818–6831. [Google Scholar] [CrossRef]
- Liu, W.; Xia, X.; Xiong, L.; Lu, Y.; Gao, L.; Yu, Z. Automated Vehicle Sideslip Angle Estimation Considering Signal Measurement Characteristic. IEEE Sens. J. 2021, 21, 21675–21687. [Google Scholar] [CrossRef]
- Wang, B.; Shi, H.; Chen, L.; Wang, X.; Wang, G.; Zhong, F.A.; Wang, B.; Shi, H.; Chen, L.; Wang, X.; et al. A Recognition Method for Road Hypnosis Based on Physiological Characteristics. Sensors 2023, 23, 3404. [Google Scholar] [CrossRef]
- Liu, B.; Lai, H.; Kan, S.; Chan, C. Camera-Based Smart Parking System Using Perspective Transformation. Smart Cities 2023, 6, 1167–1184. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, L.; Lou, R.; Li, X. Recognition of Lane Changing Maneuvers for Vehicle Driving Safety. Electronics 2023, 12, 1456. [Google Scholar] [CrossRef]
- Yan, Z.; Yang, B.; Wang, Z.; Nakano, K.A.; Valero, F.; Yan, Z.; Yang, B.; Wang, Z.; Nakano, K. A Predictive Model of a Driver’s Target Trajectory Based on Estimated Driving Behaviors. Sensors 2023, 23, 1405. [Google Scholar] [CrossRef]
- Matas, J.; Chum, O.; Urban, M.; Pajdla, T. Robust Wide-Baseline Stereo from Maximally Stable Extremal Regions. Image Vis. Comput. 2004, 22, 761–767. [Google Scholar] [CrossRef]
- Escalante, H.J.; Ponce-López, V.; Escalera, S.; Baró, X.; Morales-Reyes, A.; Martínez-Carranza, J. Evolving Weighting Schemes for the Bag of Visual Words. Neural. Comput. Appl. 2017, 28, 925–939. [Google Scholar] [CrossRef]
- Farin, G.E.; Hansford, D. The Essentials of CAGD; A.K. Peters: Natick, MA, USA, 2000; ISBN 9781568811239. [Google Scholar]
- Neumann, L.; Matas, J. Real-Time Lexicon-Free Scene Text Localization and Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1872–1885. [Google Scholar] [CrossRef] [PubMed]
- Unar, S.; Wang, X.; Zhang, C.; Wang, C. Detected Text-Based Image Retrieval Approach for Textual Images. IET Image Process 2019, 13, 515–521. [Google Scholar] [CrossRef]
- Pan, Y.F.; Hou, X.; Liu, C.L. A Hybrid Approach to Detect and Localize Texts in Natural Scene Images. IEEE Trans. Image Process. 2011, 20, 800–813. [Google Scholar] [CrossRef] [PubMed]
- Delaye, A.; Lee, K. A Flexible Framework for Online Document Segmentation by Pairwise Stroke Distance Learning. Pattern Recognit. 2015, 48, 1197–1210. [Google Scholar] [CrossRef]
- Niesler, T.R.; Woodland, P.C. A Variable-Length Category-Based n-Gram Language Model. In Proceedings of the 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, Atlanta, GA, USA, 9 May 1996; Volume 1, pp. 164–167. [Google Scholar] [CrossRef]
- Tang, Z.; Huang, Z.; Yao, H.; Zhang, X.; Chen, L.; Yu, C. Perceptual Image Hashing with Weighted DWT Features for Reduced-Reference Image Quality Assessment. Comput. J. 2018, 61, 1695–1709. [Google Scholar] [CrossRef]
- Wang, H.; Bai, X.; Yang, M.; Zhu, S.; Wang, J.; Liu, W. Scene Text Retrieval via Joint Text Detection and Similarity Learning. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 4556–4565. [Google Scholar]
- Park, C.; Park, S. Performance Evaluation of Zone-Based In-Vehicle Network Architecture for Autonomous Vehicles. Sensors 2023, 23, 669. [Google Scholar] [CrossRef]
- Kai, W.; Babenko, B.; Belongie, S. End-to-End Scene Text Recognition. In Proceedings of the IEEE International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 1457–1464. [Google Scholar]
- Karatzas, D.; Shafait, F.; Uchida, S.; Iwamura, M.; Bigorda, L.G.I.; Mestre, S.R.; Mas, J.; Mota, D.F.; Almazan, J.A.; De Las Heras, L.P. ICDAR 2013 Robust Reading Competition. In Proceedings of the 12th International Conference on Document Analysis and Recognition, Washington, DC, USA, 25–28 August 2013; pp. 1484–1493. [Google Scholar]
- Ch’Ng, C.K.; Chan, C.S. Total-Text: A Comprehensive Dataset for Scene Text Detection and Recognition. In Proceedings of the 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Kyoto, Japan, 9–15 November 2017; Volume 1, pp. 935–942. [Google Scholar]
- Yao, C.; Bai, X.; Liu, W.; Ma, Y.; Tu, Z. Detecting Texts of Arbitrary Orientations in Natural Images. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; Volume 8, pp. 1083–1090. [Google Scholar]
- Lucas, S.M.; Panaretos, A.; Sosa, L.; Tang, A.; Wong, S.; Young, R. ICDAR 2003 Robust Reading Competitions. In Proceedings of the 7th International Conference on Document Analysis and Recognition, Edinburgh, UK, 3–6 August 2003; pp. 682–687. [Google Scholar]
- Unar, S.; Wang, X.; Zhang, C. Visual and Textual Information Fusion Using Kernel Method for Content Based Image Retrieval. Inf. Fusion 2018, 44, 176–187. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, Z.; Shen, W.; Zeng, D.; Fang, M.; Zhou, S. Text Detection in Scene Images Based on Exhaustive Segmentation. Signal Process Image Commun. 2017, 50, 1–8. [Google Scholar] [CrossRef]
- Unar, S.; Wang, X.; Wang, C.; Wang, Y. A Decisive Content Based Image Retrieval Approach for Feature Fusion in Visual and Textual Images. Knowl. Based Syst. 2019, 179, 8–20. [Google Scholar] [CrossRef]
- Yu, C.; Song, Y.; Zhang, Y. Scene Text Localization Using Edge Analysis and Feature Pool. Neurocomputing 2016, 175, 652–661. [Google Scholar] [CrossRef]
- Zhong, Y.; Cheng, X.; Chen, T.; Zhang, J.; Zhou, Z.; Huang, G. PRPN: Progressive Region Prediction Network for Natural Scene Text Detection. Knowl. Based Syst. 2022, 236, 107767. [Google Scholar] [CrossRef]
- Lyu, P.; Yao, C.; Wu, W.; Yan, S.; Bai, X. Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7553–7563. [Google Scholar]
- Hou, J.B.; Zhu, X.; Liu, C.; Sheng, K.; Wu, L.H.; Wang, H.; Yin, X.C. HAM: Hidden Anchor Mechanism for Scene Text Detection. IEEE Trans. Image Process. 2020, 29, 7904–7916. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, Y.; Luo, Z.; Liu, C.L.; Choi, H.; Kim, S. Arbitrary Shape Scene Text Detection with Adaptive Text Region Representation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 6442–6451. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, H.; Zha, Z.; Xing, M.; Fu, Z.; Zhang, Y. Contournet: Taking a Further Step toward Accurate Arbitrary-Shaped Scene Text Detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–18 June 2020; pp. 11750–11759. [Google Scholar]
- Wang, W.; Xie, E.; Li, X.; Hou, W.; Lu, T.; Yu, G.; Shao, S. Shape Robust Text Detection with Progressive Scale Expansion Network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9336–9345. [Google Scholar]
- Liao, M.; Wan, Z.; Yao, C.; Chen, K.; Bai, X. Real-Time Scene Text Detection with Differentiable Binarization. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; AAAI Press: Washington, DC, USA, 2020; Volume 34, pp. 11474–11481. [Google Scholar]
- Zhang, C.; Liang, B.; Huang, Z.; En, M.; Han, J.; Ding, E.; Ding, X. Look More than Once: An Accurate Detector for Text of Arbitrary Shapes. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 10544–10553. [Google Scholar]
- Shi, B.; Bai, X.; Belongie, S. Detecting Oriented Text in Natural Images by Linking Segments. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2550–2558. [Google Scholar]
- Mishra, A.; Alahari, K.; Jawahar, C.V. Image Retrieval Using Textual Cues. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 3040–3047. [Google Scholar]
- Neumann, L.; Matas, J. Real-Time Scene Text Localization and Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3538–3545. [Google Scholar]
Method | Precision | Recall | f |
---|---|---|---|
Unar’18 et al. [49] | 54.0 | 51.0 | 52.0 |
Wei et al. [50] | 18.2 | 41.2 | 25.2 |
Unar’19 et al. [51] | 47.0 | 42.0 | 44.0 |
Yu et al. [52] | 27.0 | 35.0 | 30.0 |
Our method | 61.52 | 58.31 | 59.87 |
Method | Precision | Recall | f |
---|---|---|---|
Wei et al. [50] | 83.5 | 77.2 | 80.2 |
Zhong et al. [53] | 90.8 | 86.1 | 88.4 |
Unar’18 et al. [49] | 81.0 | 79.0 | 79.0 |
Lyu et al. [54] | 92.0 | 84.4 | 88.0 |
Neumann et al. [36] | 82.0 | 71.0 | 76.0 |
Unar’19 et al. [51] | 83.0 | 82.0 | 82.0 |
Hou et al. [55] | 89.6 | 81.3 | 85.3 |
Our method | 92.4 | 87.63 | 89.95 |
Method | Precision | Recall | f |
---|---|---|---|
Wang et al. [56] | 76.2 | 80.9 | 78.5 |
Yuxin et al. [57] | 83.9 | 86.9 | 85.4 |
Wang et al. [58] | 75.1 | 81.8 | 78.3 |
Liao et al. [59] | 82.5 | 87.1 | 84.7 |
Zhang et al. [60] | 75.7 | 88.6 | 81.6 |
Our method | 84.2 | 86.9 | 85.5 |
Method | Precision | Recall | f |
---|---|---|---|
Wang et al. [56] | 82.1 | 85.2 | 83.6 |
Zhong et al. [53] | 85.5 | 81.3 | 83.3 |
Lyu et al. [54] | 87.6 | 76.2 | 81.5 |
Hou et al. [55] | 81.8 | 78.7 | 80.2 |
Shi et al. [61] | 86.0 | 70.0 | 77.0 |
Our method | 86.2 | 86.71 | 86.45 |
Datasets | mAP |
---|---|
SVT | 69.2 |
ICDAR’13 | 74.8 |
Total-Text | 59.1 |
MSRA-TD500 | 63.4 |
Datasets | SVT | ICDAR’13 | Total-Text | MSRA-TD500 |
---|---|---|---|---|
Unar’18 et al. [49] | 63.0 | 71.0 | - | - |
Mishra et al. [62] | 56.0 | 65.0 | - | - |
Neumann et al. [63] | 23.0 | - | - | - |
Unar’19 et al. [51] | 59.0 | 74.0 | - | - |
Our method | 66.8 | 75.6 | 57.4 | 61.7 |
Datasets | One-to-One | One-to-Many |
---|---|---|
SVT | 0.433 | 2.644 |
ICDAR’13 | 0.391 | 2.309 |
Total-Text | 0.534 | 3.215 |
MSRA-TD500 | 0.482 | 2.962 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Unar, S.; Su, Y.; Liu, P.; Teng, L.; Wang, Y.; Fu, X. An Intelligent System to Sense Textual Cues for Location Assistance in Autonomous Vehicles. Sensors 2023, 23, 4537. https://doi.org/10.3390/s23094537
Unar S, Su Y, Liu P, Teng L, Wang Y, Fu X. An Intelligent System to Sense Textual Cues for Location Assistance in Autonomous Vehicles. Sensors. 2023; 23(9):4537. https://doi.org/10.3390/s23094537
Chicago/Turabian StyleUnar, Salahuddin, Yining Su, Pengbo Liu, Lin Teng, Yafei Wang, and Xianping Fu. 2023. "An Intelligent System to Sense Textual Cues for Location Assistance in Autonomous Vehicles" Sensors 23, no. 9: 4537. https://doi.org/10.3390/s23094537