Intrusion Detection Method for Internet of Vehicles Based on Parallel Analysis of Spatio-Temporal Features
<p>Architecture of the PA-STF method.</p> "> Figure 2
<p>LSTM unit structure.</p> "> Figure 3
<p>Performance comparison of each method under different attack types: (<b>a</b>) comparison of accuracy, (<b>b</b>) comparison of FPR, and (<b>c</b>) comparison of F1-score.</p> "> Figure 4
<p>Confusion matrix of the PA-STF method on NSL-KDD dataset.</p> "> Figure 5
<p>Confusion matrix of the PA-STF method on UNSW-NB15 dataset.</p> "> Figure 6
<p>Training and testing losses of the different methods: (<b>a</b>) training loss comparison and (<b>b</b>) test loss comparison.</p> "> Figure 7
<p>Performance comparison of the different structures.</p> "> Figure 8
<p>Training and testing losses of different structures: (<b>a</b>) training loss comparison and (<b>b</b>) test loss comparison.</p> ">
Abstract
:1. Introduction
- We propose a correlation-based feature selection method for selecting relevant features suitable for intrusion detection in the IoV. A recursive elimination method is used to obtain the optimal feature set, thereby effectively eliminating redundant features.
- We design a new spatio-temporal feature parallel extraction architecture, using TCN and LSTM to extract spatio-temporal features of IoV traffic in parallel. The proposed architecture has higher reliability compared with the serial architecture.
- We design a spatio-temporal feature fusion approach using the self-attention mechanism. By giving attention weights to the spatio-temporal features, it is possible to fuse various features efficiently. The fusion features significantly enhance the IoV intrusion detection model’s efficacy.
- We conduct experimental evaluation on the intrusion detection dataset. Compared with the comparison methods, our method has higher accuracy and F1 score, and has lower false-positive rate.
2. Related Work
3. Proposed PA-STF Method
3.1. Data Preprocessing
Algorithm 1 Correlation-Based Feature Selection Algorithm |
|
3.2. Parallel Extraction of Spatio-Temporal Features
3.3. Spatio-Temporal Feature Fusion and Intrusion Detection
4. Performance Evaluation
4.1. Dataset and Evaluation Metrics
4.2. Performance Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
IoV | Internet of Vehicles |
IoT | Internet of Things |
AI | artificial intelligence |
V2X | vehicle-to-everything |
DT | decision tree |
SVM | support vector machine |
TCN | temporal convolutional network |
RNN | recurrent neural network |
LSTM | long short-term memory |
CNN | convolutional neural network |
AE | autoencoder |
GAN | generative adversarial network |
DBN | deep belief network |
MLP | multilayer perceptron |
BiSRU | bidirectional simple recurrent unit |
PA-STF | parallel analysis of spatio-temporal features |
FPR | false-positive rate |
References
- Zhao, P.; Huang, Y.; Gao, J.; Xing, L.; Wu, H.; Ma, H. Federated learning-based collaborative authentication protocol for shared data in social IoV. IEEE Sen. J. 2022, 22, 7385–7398. [Google Scholar] [CrossRef]
- Kan, C.; Wu, H.; Xing, L.; Ma, H. Cooperative Edge Caching Strategy Based on Mobile Prediction and Social-Aware in Internet of Vehicles. In Communications in Computer and Information Science, Proceedings of the Wireless Sensor Networks—16th China Conference, CWSN 2022, Guangzhou, China, 10–13 November 2022; Ma, H., Wang, X., Cheng, L., Cui, L., Liu, L., Zeng, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; Volume 1715, pp. 108–119. [Google Scholar] [CrossRef]
- Xing, L.; Jia, X.; Gao, J.; Wu, H. A Location Privacy Protection Algorithm Based on Double K-Anonymity in the Social Internet of Vehicles. IEEE Commun. Lett. 2021, 25, 3199–3203. [Google Scholar] [CrossRef]
- Xing, L.; Zhao, P.; Gao, J.; Wu, H.; Ma, H. A Survey of the Social Internet of Vehicles: Secure Data Issues, Solutions, and Federated Learning. IEEE Intell. Transp. Syst. Mag. 2023, 15, 70–84. [Google Scholar] [CrossRef]
- Xiao, Y.; Xing, C.; Zhang, T.; Zhao, Z. An Intrusion Detection Model Based on Feature Reduction and Convolutional Neural Networks. IEEE Access 2019, 7, 42210–42219. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Moustafa, N.; Hawash, H.; Razzak, I.; Sallam, K.M.; Elkomy, O.M. Federated Intrusion Detection in Blockchain-Based Smart Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2022, 23, 2523–2537. [Google Scholar] [CrossRef]
- Anzer, A.; Elhadef, M. Deep Learning-Based Intrusion Detection Systems for Intelligent Vehicular Ad Hoc Networks. In Lecture Notes in Electrical Engineering, Proceedings of the Advanced Multimedia and Ubiquitous Engineering—MUE/FutureTech 2018, Salerno, Italy, 23–25 April 2018; Park, J.J., Loia, V., Choo, K.R., Yi, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; Volume 518, pp. 109–116. [Google Scholar] [CrossRef]
- Zekry, A.; Sayed, A.; Moussa, M.; Elhabiby, M. Anomaly Detection using IoT Sensor-Assisted ConvLSTM Models for Connected Vehicles. In Proceedings of the 93rd IEEE Vehicular Technology Conference, VTC Spring 2021, Helsinki, Finland, 25–28 April 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Shu, J.; Zhou, L.; Zhang, W.; Du, X.; Guizani, M. Collaborative Intrusion Detection for VANETs: A Deep Learning-Based Distributed SDN Approach. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4519–4530. [Google Scholar] [CrossRef]
- Tan, Q.S.; Huang, W.; Li, Q. An intrusion detection method based on DBN in ad hoc networks. In Wireless Communication and Sensor Network: Proceedings of the International Conference on Wireless Communication and Sensor Network (WCSN 2015); World Scientific: Singapore, 2016; pp. 477–485. [Google Scholar] [CrossRef]
- Lo, W.; AlQahtani, H.; Thakur, K.; Almadhor, A.; Chander, S.; Kumar, G. A hybrid deep learning based intrusion detection system using spatial-temporal representation of in-vehicle network traffic. Veh. Commun. 2022, 35, 100471. [Google Scholar] [CrossRef]
- Spandonidis, C.C.; Fotis, G.; Sedikos, E.; Dimitris, R.; Theodoropoulos, P. Development of a MEMS-Based IoV System for Augmenting Road Traffic Survey. IEEE Trans. Instrum. Meas. 2022, 71, 1–8. [Google Scholar] [CrossRef]
- Busacca, F.; Grasso, C.; Palazzo, S.; Schembra, G. A Smart Road Side Unit in a Microeolic Box to Provide Edge Computing for Vehicular Applications. IEEE Trans. Green Commun. Netw. 2023, 7, 194–210. [Google Scholar] [CrossRef]
- Wan, S.; Ding, S.; Chen, C. Edge computing enabled video segmentation for real-time traffic monitoring in internet of vehicles. Pattern Recognit. 2022, 121, 108146. [Google Scholar] [CrossRef]
- Loukas, G.; Vuong, T.; Heartfield, R.; Sakellari, G.; Yoon, Y.; Gan, D. Cloud-Based Cyber-Physical Intrusion Detection for Vehicles Using Deep Learning. IEEE Access 2018, 6, 3491–3508. [Google Scholar] [CrossRef]
- Gui, G.; Liu, M.; Tang, F.; Kato, N.; Adachi, F. 6G: Opening New Horizons for Integration of Comfort, Security, and Intelligence. IEEE Wirel. Commun. 2020, 27, 126–132. [Google Scholar] [CrossRef]
- Alladi, T.; Agrawal, A.; Gera, B.; Chamola, V.; Sikdar, B.; Guizani, M. Deep Neural Networks for Securing IoT Enabled Vehicular Ad-Hoc Networks. In Proceedings of the ICC 2021—IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Yang, J.; Hu, J.; Yu, T. Federated AI-Enabled In-Vehicle Network Intrusion Detection for Internet of Vehicles. Electronics 2022, 11, 3658. [Google Scholar] [CrossRef]
- Li, X.; Hu, Z.; Xu, M.; Wang, Y.; Ma, J. Transfer learning based intrusion detection scheme for Internet of vehicles. Inf. Sci. 2021, 547, 119–135. [Google Scholar] [CrossRef]
- Shone, N.; Tran, N.N.; Phai, V.D.; Shi, Q. A Deep Learning Approach to Network Intrusion Detection. IEEE Trans. Emerg. Top. Comput. Intell. 2018, 2, 41–50. [Google Scholar] [CrossRef]
- Xu, X.; Li, J.; Yang, Y.; Shen, F. Toward Effective Intrusion Detection Using Log-Cosh Conditional Variational Autoencoder. IEEE Internet Things J. 2021, 8, 6187–6196. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, L.; Qi, L.; Li, Y.; Yang, W. A novel wireless network intrusion detection method based on adaptive synthetic sampling and an improved convolutional neural network. IEEE Access 2020, 8, 195741–195751. [Google Scholar] [CrossRef]
- Park, D.; Kim, S.; Kwon, H.; Shin, D.; Shin, D. Host-Based Intrusion Detection Model Using Siamese Network. IEEE Access 2021, 9, 76614–76623. [Google Scholar] [CrossRef]
- Zhou, H.; Kang, L.; Pan, H.; Guo, W.; Feng, Y. An intrusion detection approach based on incremental long short-term memory. Int. J. Inf. Sec. 2023, 22, 433–446. [Google Scholar] [CrossRef]
- Ashraf, J.; Bakhshi, A.D.; Moustafa, N.; Khurshid, H.; Javed, A.; Beheshti, A. Novel Deep Learning-Enabled LSTM Autoencoder Architecture for Discovering Anomalous Events from Intelligent Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4507–4518. [Google Scholar] [CrossRef]
- Wang, W.; Sheng, Y.; Wang, J.; Zeng, X.; Ye, X.; Huang, Y.; Zhu, M. HAST-IDS: Learning Hierarchical Spatial-Temporal Features Using Deep Neural Networks to Improve Intrusion Detection. IEEE Access 2018, 6, 1792–1806. [Google Scholar] [CrossRef]
- Han, X.; Yin, R.; Lu, Z.; Jiang, B.; Liu, Y.; Liu, S.; Wang, C.; Li, N. STIDM: A Spatial and Temporal Aware Intrusion Detection Model. In Proceedings of the 19th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2020, Guangzhou, China, 29 December 2020–1 January 2021; pp. 370–377. [Google Scholar] [CrossRef]
- Seshia, S.A.; Sadigh, D.; Sastry, S.S. Toward verified artificial intelligence. Commun. ACM 2022, 65, 46–55. [Google Scholar] [CrossRef]
- Krichen, M.; Mihoub, A.; Alzahrani, M.Y.; Adoni, W.Y.H.; Nahhal, T. Are Formal Methods Applicable to Machine Learning and Artificial Intelligence? In Proceedings of the 2022 2nd International Conference of Smart Systems and Emerging Technologies (SMARTTECH), Riyadh, Saudi Arabia, 9–11 May 2022. [Google Scholar] [CrossRef]
- Yang, L.; Moubayed, A.; Shami, A. MTH-IDS: A Multitiered Hybrid Intrusion Detection System for Internet of Vehicles. IEEE Internet Things J. 2022, 9, 616–632. [Google Scholar] [CrossRef]
- Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020, 415, 295–316. [Google Scholar] [CrossRef]
- Anusha, K.; Sathiyamoorthy, E. Comparative study for feature selection algorithms in intrusion detection system. Autom. Control Comput. Sci. 2016, 50, 1–9. [Google Scholar] [CrossRef]
- Sun, H.; Chen, M.; Weng, J.; Liu, Z.; Geng, G. Anomaly Detection for In-Vehicle Network Using CNN-LSTM with Attention Mechanism. IEEE Trans. Veh. Technol. 2021, 70, 10880–10893. [Google Scholar] [CrossRef]
- Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, CISDA 2009, Ottawa, QC, Canada, 8–10 July 2009; pp. 1–6. [Google Scholar] [CrossRef]
- Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In Proceedings of the 2015 Military Communications and Information Systems Conference, MilCIS 2015, Canberra, Australia, 10–12 November 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Cabelin, J.D.; Alpaño, P.V.; Pedrasa, J.R. SVM-based Detection of False Data Injection in Intelligent Transportation System. In Proceedings of the International Conference on Information Networking, ICOIN 2021, Jeju Island, Republic of Korea, 13–16 January 2021; pp. 279–284. [Google Scholar] [CrossRef]
- Nie, L.; Ning, Z.; Wang, X.; Hu, X.; Cheng, J.; Li, Y. Data-Driven Intrusion Detection for Intelligent Internet of Vehicles: A Deep Convolutional Neural Network-Based Method. IEEE Trans. Netw. Sci. Eng. 2020, 7, 2219–2230. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Shang, J.; Chen, X.; Liang, K. A self-learning detection method of Sybil attack based on LSTM for electric vehicles. Energies 2020, 13, 1382. [Google Scholar] [CrossRef]
- Ding, S.; Wang, Y.; Kou, L. Network intrusion detection based on BiSRU and CNN. In Proceedings of the IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems, MASS 2021, Denver, CO, USA, 4–7 October 2021; pp. 145–147. [Google Scholar] [CrossRef]
- Chen, C.; Wang, C.; Liu, B.; He, C.; Cong, L.; Wan, S. Edge Intelligence Empowered Vehicle Detection and Image Segmentation for Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst. 2023, 1–12. [Google Scholar] [CrossRef]
- Chen, C.; Yao, G.; Liu, L.; Pei, Q.; Song, H.; Dustdar, S. A Cooperative Vehicle-Infrastructure System for Road Hazards Detection with Edge Intelligence. IEEE Trans. Intell. Transp. Syst. 2023, 1–13. [Google Scholar] [CrossRef]
Attack Type | Size | Description |
---|---|---|
Normal | 77,054 | Normal behavior data |
DoS | 53,385 | Denial of service attacks |
Probe | 14,077 | Probing and scanning attacks |
R2L | 3649 | System vulnerability attacks |
U2R | 252 | Gain access to remote |
Attack Type | Size | Description |
---|---|---|
Normal | 2,218,761 | Normal behavior data |
Generic | 215,481 | Information gathering attacks |
Exploit | 44,525 | Attacks that exploit known system vulnerabilities |
Fuzzers | 24,246 | Fuzzy attacks |
DoS | 16,353 | Denial-of-service attacks |
Recon | 13,987 | Port scanning attacks |
Analysis | 2677 | HTML file penetration attack |
Backdoor | 2329 | Attacks that bypass to systems |
Shellcode | 1511 | Exploit code attacks |
Worm | 174 | Self-replicating and spreading-malware attacks |
Parameter | Value | Description |
---|---|---|
Learning-rate | 0.01 | Gradient descent steps during model training |
Epoch | 50 | Number of training rounds |
Dropout | 0.2 | Dropout rate of neural network unit |
TCN-layer | 4 | Number of layers of the TCN model |
LSTM-Unit | 48 | Number of LSTM model units |
MLP-layer | 4 | Number of layers of the MLP model |
Methods | Accuracy | FPR | F1 Score |
---|---|---|---|
SVM | 89.64 | 5.64 | 87.63 |
CNN | 93.17 | 4.38 | 92.69 |
LSTM | 92.77 | 5.34 | 92.83 |
CNN-BiSRU | 95.34 | 2.16 | 96.21 |
PA-STF | 98.68 | 0.21 | 98.94 |
Methods | Accuracy | FPR | F1 Score |
---|---|---|---|
SVM | 92.64 | 4.65 | 86.75 |
CNN | 94.09 | 4.68 | 90.24 |
LSTM | 93.77 | 4.71 | 92.45 |
CNN-BiSRU | 94.22 | 2.95 | 94.24 |
PA-STF | 96.34 | 1.38 | 95.76 |
Methods | Memory Footprint (KB) | Detection Time (ms) |
---|---|---|
SVM | 352 | 0.23 |
CNN | 2194 | 1.79 |
LSTM | 4627 | 2.14 |
CNN-BiSRU | 8463 | 5.31 |
PA-STF | 5216 | 1.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, L.; Wang, K.; Wu, H.; Ma, H.; Zhang, X. Intrusion Detection Method for Internet of Vehicles Based on Parallel Analysis of Spatio-Temporal Features. Sensors 2023, 23, 4399. https://doi.org/10.3390/s23094399
Xing L, Wang K, Wu H, Ma H, Zhang X. Intrusion Detection Method for Internet of Vehicles Based on Parallel Analysis of Spatio-Temporal Features. Sensors. 2023; 23(9):4399. https://doi.org/10.3390/s23094399
Chicago/Turabian StyleXing, Ling, Kun Wang, Honghai Wu, Huahong Ma, and Xiaohui Zhang. 2023. "Intrusion Detection Method for Internet of Vehicles Based on Parallel Analysis of Spatio-Temporal Features" Sensors 23, no. 9: 4399. https://doi.org/10.3390/s23094399
APA StyleXing, L., Wang, K., Wu, H., Ma, H., & Zhang, X. (2023). Intrusion Detection Method for Internet of Vehicles Based on Parallel Analysis of Spatio-Temporal Features. Sensors, 23(9), 4399. https://doi.org/10.3390/s23094399