A Multi-Layer Intrusion Detection System for SOME/IP-Based In-Vehicle Network
<p>SOME/IP protocol format. (<b>a</b>) SOME/IP-SD message format. (<b>b</b>) SOME/IP message format.</p> "> Figure 2
<p>SOME/IP communication paradigm. (<b>a</b>) Request-Response-RPC. (<b>b</b>) Fire & Forget-RPC. (<b>c</b>) Setter & Getter of Field. (<b>d</b>) Publish-Subscribe for event.</p> "> Figure 3
<p>Automotive zonal EEA.</p> "> Figure 4
<p>SOME/IP dataset generation process for IDS.</p> "> Figure 5
<p>System architecture and workflow of multi-layer IDS.</p> "> Figure 6
<p>The principle of GRU.</p> "> Figure 7
<p>Structure of multi-GRU model.</p> "> Figure 8
<p>Number of model parameters with system expansion. (<b>a</b>) Number of parameters in single-GRU model with the increase in signal. (<b>b</b>) Number of parameters in multi-GRU model with the increase in service. One service corresponds to one signal.</p> "> Figure 9
<p>Bayesian optimization process with hyperparameters. (<b>a</b>) Contour distribution of mean and standard error of threefold cross-validation accuracy with <span class="html-italic">h<sub>scale</sub></span> and lr. (<b>b</b>) Contour distribution of that with β1 and β2.</p> "> Figure 10
<p>Train loss of models. (<b>a</b>) Train loss of multi-GRU model. (<b>b</b>) Train loss of single-GRU model.</p> "> Figure 11
<p>Confusion matrix of models. (<b>a</b>) Confusion matrix of multi-GRU. (<b>b</b>) Confusion matrix of single-GRU.</p> ">
Abstract
:1. Introduction
- We propose SOME/IP data generation methods based on Prescan, Simulink, and CANoe. In addition to the SOME/IP header that satisfies the protocol specification, the method can generate meaningful and relevant in-vehicle network data, such as camera data, ADAS data, body data, and attack data.
- We propose a multi-layer intrusion detection system architecture with both rule-based and AI-based approaches. This is the first attempt to detect anomalies simultaneously on SOME/IP header, SOME/IP-SD message, message interval, and payload.
- The multi-GRU model is proposed in the AI-based method, and the detection performance is improved by data pre-processing and Bayesian optimization. Multi-GRU is shown to scale well and outperform the single-GRU model.
- We implement the IDS proposed in this paper on a laptop and Jetson Xavier NX and evaluate its performance using a simulation database. Experiments show that our proposed IDS has excellent detection accuracy and meets the real-time performance of vehicles.
2. Related Work
2.1. IDS on CAN
2.2. IDS on Automotive Ethernet
2.2.1. Rule-Based IDS
2.2.2. AI-Based IDS
2.3. Literature Comparison
3. Vulnerability of SOME/IP
3.1. SOME/IP Overview
3.2. Attack Scenario
3.3. Attack of SOME/IP
3.3.1. Fuzzy
3.3.2. Spoof
3.3.3. DoS
3.3.4. Abnormal Communication Process
3.3.5. Unauthorized Operation
4. Proposed Multi-Layer IDS
4.1. Dataset Generation
4.2. System Structure
4.3. Data Extraction Module
4.4. Rule-Based Detection Module
4.5. Data Pre-Processing Module
4.5.1. Deserialization and Data Restoration
4.5.2. Data Normalization
4.6. AI-Based Detection Module Multi-GRU
4.6.1. GRU
4.6.2. Architecture of Multi-GRU
4.6.3. Model Hyperparameters
5. Performance Evaluation
5.1. Data Description
5.2. Experiment Setup
5.3. Evaluation for Rule-Based Detection
5.4. Evaluation for AI-Based Detection
5.5. Performance of Resistance to Sample Imbalance
5.6. Vehicle-Level Real-Time Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keertikumar, M.; Shubham, M.; Banakar, R.M. Evolution of IoT in smart vehicles: An overview. In Proceedings of the International Conference on Green Computing and Internet of Things (ICGCIoT 2015), Greater Noida, India, 8–10 October 2015; pp. 804–805. [Google Scholar]
- Toufga, S.; Abdellatif, S.; Assouane, H.T.; Owezarski, P.; Villemur, T. Towards Dynamic Controller Placement in Software Defined Vehicular Networks. Sensors 2020, 20, 1701. [Google Scholar] [CrossRef] [PubMed]
- Traub, M.; Maier, A.; Barbehon, K.L. Future Automotive Architecture and the Impact of IT Trends. IEEE Softw. 2017, 34, 27–32. [Google Scholar] [CrossRef]
- Panigrahy, S.K.; Emany, H. A Survey and Tutorial on Network Optimization for Intelligent Transport System Using the Internet of Vehicles. Sensors 2023, 23, 555. [Google Scholar] [CrossRef] [PubMed]
- Hank, P.; Müller, S.; Vermesan, O.; Van Den Keybus, J. Automotive ethernet: In-vehicle networking and smart mobility. In Proceedings of the 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE 2013), Grenoble, France, 18–22 March 2013; pp. 1735–1739. [Google Scholar]
- Aspestrand, O.; Claeson, V. The Fast-Lane Development of Automotive Ethernet for Autonomous Drive. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2018. Available online: https://odr.chalmers.se/bitstream/20.500.12380/256211/1/256211.pdf (accessed on 20 April 2023).
- Kreissl, J. Absicherung der SOME/IP Kommunikation Bei Adaptive AUTOSAR. Master’s Thesis, Universität Stuttgart, Stuttgart, Germany, 2017. Available online: https://elib.uni-stuttgart.de/bitstream/11682/9482/1/ausarbeitung.pdf (accessed on 20 April 2023).
- Golson, J. Jeep Hackers at It Again, This Time Taking Control of Steering and Braking Systems. Available online: https://www.theverge.com/2016/8/2/12353186/car-hackjeep-cherokee-vulnerability-miller-valasek (accessed on 20 April 2023).
- Miller, C.; Valasek, C. A Survey of Remote Automotive Attack Surfaces. Available online: https://img.hardworkingtrucks.com/files/base/randallreilly/all/migrated-files/hwt/2014/09/Remote_Automotive_Attack_Surfaces.pdf (accessed on 20 April 2023).
- Woo, S.; Jo, H.J.; Lee, D.H. A Practical Wireless Attack on the Connected Car and Security Protocol for In-Vehicle CAN. IEEE Trans. Intell. Transp. Syst. 2014, 16, 993–1006. [Google Scholar] [CrossRef]
- Mandal, A.K.; Cortesi, A.; Ferrara, P.; Panarotto, F.; Spoto, F. Vulnerability analysis of Android auto infotainment apps. In Proceedings of the 15th ACM International Conference on Computing Frontiers, Ischia, Italy, 8–10 May 2018; pp. 183–190. [Google Scholar]
- Ma, B.; Yang, S.; Zuo, Z.; Zou, B.; Cao, Y.; Yan, X.; Zhou, S.; Li, J. An Authentication and Secure Communication Scheme for In-Vehicle Networks Based on SOME/IP. Sensors 2022, 22, 647. [Google Scholar] [CrossRef]
- Iorio, M.; Reineri, M.; Risso, F.; Sisto, R.; Valenza, F. Securing SOME/IP for In-Vehicle Service Protection. IEEE Trans. Veh. Technol. 2020, 69, 13450–13466. [Google Scholar] [CrossRef]
- Iorio, M.; Buttiglieri, A.; Reineri, M.; Risso, F.; Sisto, R.; Valenza, F. Protecting In-Vehicle Services: Security-Enabled SOME/IP Middleware. IEEE Veh. Technol. Mag. 2020, 15, 77–85. [Google Scholar] [CrossRef]
- Liao, H.-J.; Lin, C.-H.R.; Lin, Y.-C.; Tung, K.-Y. Intrusion detection system: A comprehensive review. J. Netw. Comput. Appl. 2013, 36, 16–24. [Google Scholar] [CrossRef]
- Gehrmann, T.; Duplys, P. Intrusion Detection for SOME/IP: Challenges and Opportunities. In Proceedings of the 2020 23rd Euromicro Conference on Digital System Design (DSD 2020), Kranj, Slovenia, 26–28 August 2020; pp. 583–587. [Google Scholar]
- Al-Jarrah, O.Y.; Maple, C.; Dianati, M.; Oxtoby, D.; Mouzakitis, A. Intrusion Detection Systems for Intra-Vehicle Networks: A Review. IEEE Access 2019, 7, 21266–21289. [Google Scholar] [CrossRef]
- Wu, W.; Li, R.; Xie, G.; An, J.; Bai, Y.; Zhou, J.; Li, K. A Survey of Intrusion Detection for In-Vehicle Networks. IEEE Trans. Intell. Transp. Syst. 2020, 21, 919–933. [Google Scholar] [CrossRef]
- Dong, S.; Sarem, M. DDoS Attack Detection Method Based on Improved KNN With the Degree of DDoS Attack in Software-Defined Networks. IEEE Access 2020, 8, 5039–5048. [Google Scholar] [CrossRef]
- Kokila, R.T.; Thamarai Selvi, S.; Govindarajan, K. DDoS detection and analysis in SDN-based environment using support vector machine classifier. In Proceedings of the 6th International Conference on Advanced Computing (ICoAC 2014), Chennai, India, 17–19 December 2014; pp. 205–210. [Google Scholar]
- Ali, J.; Roh, B.-H.; Lee, B.; Oh, J.; Adil, M. A Machine Learning Framework for Prevention of Software-Defined Networking controller from DDoS Attacks and dimensionality reduction of big data. In Proceedings of the International Conference on Information and Communication Technology Convergence (ICTC 2020), Jeju, Republic of Korea, 21–23 October 2020; pp. 515–519. [Google Scholar]
- Heidari, A.; Jabraeil Jamali, M.A. Internet of Things intrusion detection systems: A comprehensive review and future directions. Clust. Comput. 2022, 1–28. [Google Scholar] [CrossRef]
- Khraisat, A.; Alazab, A. A critical review of intrusion detection systems in the internet of things: Techniques, deployment strategy, validation strategy, attacks, public datasets and challenges. Cybersecurity 2021, 4, 1–27. [Google Scholar] [CrossRef]
- Bresch, M.; Salman, N. Design and Implementation of an Intrusion Detection System (IDS) for In-Vehicle Networks. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2017. Available online: https://odr.chalmers.se/bitstream/20.500.12380/251871/1/251871.pdf (accessed on 20 April 2023).
- Choi, W.; Joo, K.; Jo, H.J.; Park, M.C.; Lee, D.H. VoltageIDS: Low-Level Communication Characteristics for Automotive Intrusion Detection System. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2114–2129. [Google Scholar] [CrossRef]
- Hanselmann, M.; Strauss, T.; Dormann, K.; Ulmer, H. CANet: An Unsupervised Intrusion Detection System for High Dimensional CAN Bus Data. IEEE Access 2020, 8, 58194–58205. [Google Scholar] [CrossRef]
- Song, H.M.; Woo, J.; Kim, H.K. In-vehicle network intrusion detection using deep convolutional neural network. Veh. Commun. 2020, 21, 100198. [Google Scholar] [CrossRef]
- Olufowobi, H.; Young, C.; Zambreno, J.; Bloom, G. SAIDuCANT: Specification-Based Automotive Intrusion Detection Using Controller Area Network (CAN) Timing. IEEE Trans. Veh. Technol. 2020, 69, 1484–1494. [Google Scholar] [CrossRef]
- Yang, L.; Moubayed, A.; Shami, A. MTH-IDS: A Multitiered Hybrid Intrusion Detection System for Internet of Vehicles. IEEE Internet Things J. 2022, 9, 616–632. [Google Scholar] [CrossRef]
- Taylor, A.; Japkowicz, N.; Leblanc, S. Frequency-based anomaly detection for the automotive CAN bus. In Proceedings of the 2015 World Congress on Industrial Control Systems Security (WCICSS), London, UK, 14–16 December 2015; pp. 45–49. [Google Scholar]
- Cho, K.T.; Shin, K.G. Viden: Attacker identification on in-vehicle networks. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA, 30 October 2017; pp. 1109–1123. [Google Scholar]
- Müter, M.; Asaj, N. Entropy-based anomaly detection for in-vehicle networks. In Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV), Baden, Germany, 5–9 June 2011; pp. 1110–1115. [Google Scholar]
- Marchetti, M.; Stabili, D. Anomaly detection of CAN bus messages through analysis of ID sequences. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1577–1583. [Google Scholar]
- Markovitz, M.; Wool, A. Field classification, modeling and anomaly detection in unknown CAN bus networks. Veh. Commun. 2017, 9, 43–52. [Google Scholar] [CrossRef]
- Kang, M.-J.; Kang, J.-W. A novel intrusion detection method using deep neural network for in-vehicle network security. In Proceedings of the 2016 IEEE 83rd Vehicular Technology Conference (VTC 2016), Nanjing, China, 15–18 May 2016; pp. 1–5. [Google Scholar]
- Taylor, A.; Leblanc, S.; Japkowicz, N. Anomaly detection in automobile control network data with long short-term memory networks. In Proceedings of the 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Montreal, QC, Canada, 17–19 October 2016; pp. 130–139. [Google Scholar]
- Zhang, L.; Shi, L.; Kaja, N.; Ma, D. A two-stage deep learning approach for can intrusion detection. In Proceedings of the Ground Vehicle Systems Engineering & Technology Symposium (GVSETS 2018), Novi, MI, USA, 7–9 November 2018; pp. 1–11. [Google Scholar]
- Weber, M.; Klug, S.; Sax, E.; Zimmer, B. Embedded hybrid anomaly detection for automotive CAN communication. In Proceedings of the 9th European Congress on Embedded Real Time Software and Systems (ERTS 2018), Toulouse, France, 31 January–2 February 2018. [Google Scholar]
- Song, H.M.; Kim, H.R.; Kim, H.K. Intrusion detection system based on the analysis of time intervals of CAN messages for in-vehicle network. In Proceedings of the 2016 International Conference on Information Networking (ICOIN), Kota Kinabalu, Malaysia, 13–15 January 2016; pp. 63–68. [Google Scholar]
- Herold, N.; Posselt, S.-A.; Hanka, O.; Carle, G. Anomaly detection for SOME/IP using complex event processing. In Proceedings of the NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium, Istanbul, Turkey, 25–29 April 2016. [Google Scholar]
- Zihan, Z.; Lirong, C.; Haitao, Z.; Fan, Z. Research on Intrusion Detection Technology Based on Embedded Ethernet. In Proceedings of the 18th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP 2021), Chengdu, China, 17–19 December 2021; pp. 587–600. [Google Scholar]
- Jeong, S.; Jeon, B.; Chung, B.; Kim, H.K. Convolutional neural network-based intrusion detection system for AVTP streams in automotive Ethernet-based networks. Veh. Commun. 2021, 29, 100338. [Google Scholar] [CrossRef]
- Alkhatib, N.; Mushtaq, M.; Ghauch, H.; Danger, J.-L. Unsupervised Network Intrusion Detection System for AVTP in Automotive Ethernet Networks. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Aachen, Germany, 5–9 June 2022; pp. 1731–1738. [Google Scholar]
- Alkhatib, N.; Ghauch, H.; Danger, J.-L. SOME/IP Intrusion Detection using Deep Learning-based Sequential Models in Automotive Ethernet Networks. In Proceedings of the 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON 2021), Vancouver, BC, Canada, 27–30 October 2021; pp. 0954–0962. [Google Scholar]
- SOME/IP Generator. Available online: https://github.com/Egomania/SOME-IP_Generator (accessed on 20 April 2023).
- Grimm, D.; Weber, M.; Sax, E. An extended hybrid anomaly detection system for automotive electronic control units communicating via ethernet. In Proceedings of the 4th International Conference on Vehicle Technology and Intelligent Transport Systems, Funchal, Madeira, Portugal, 16–18 March 2018. [Google Scholar]
- SOME/IP Service Discovery Protocol Specification, AUTOSAR. 2022. Available online: https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf (accessed on 20 April 2023).
- SOME/IP Protocol Specification, AUTOSAR. 2022. Available online: https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPProtocol.pdf (accessed on 20 April 2023).
- Luo, F.; Wang, B.; Fang, Z.; Yang, Z.; Jiang, Y. Security Analysis of the TSN Backbone Architecture and Anomaly Detection System Design Based on IEEE 802.1Qci. Secur. Commun. Netw. 2021, 2021, 6902138. [Google Scholar] [CrossRef]
- Dataset-for-SOME-IP-IDS. Available online: https://github.com/yzyGo/Dataset-for-SOME-IP-IDS.git (accessed on 20 April 2023).
Paper | AI-Based | Rule-Based | SOME/IP | Model Innovation | Real-Time Consideration | Detection in Header/Process | Detection in Payload |
---|---|---|---|---|---|---|---|
Seonghoon et al. [42] | ✓ | ✓ | ✓ | ||||
Natasha et al. [43] | ✓ | ✓ | ✓ | ||||
Alkhatib et al. [44] | ✓ | ✓ | ✓ | ||||
Nadine et al. [40] | ✓ | ✓ | ✓ | ✓ | |||
Tobias et al. [16] | ✓ | ✓ | ✓ | ||||
Daniel et al. [46] | ✓ | ✓ | ✓ | ||||
Zhou et al. [41] | ✓ | ✓ | |||||
Our | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Attack Type | Detection Module | Content |
---|---|---|
Fuzzy | Rule-based | Header of event, RPC and SOME/IP-SD packet; service entries array and options array in SOME/IP-SD packet |
Spoof | AI-based | Payload of SOME/IP event |
DoS | Rule-based | Interval of event and SOME/IP-SD packet |
Abnormal communication process | Rule-based | Communication process |
Field Name | Description |
---|---|
IP Address | Static field in the header of SOME/IP and SOME/IP-SD packet |
MAC address | |
Port number | |
Message ID | |
Protocol version | |
Interface version | |
Message type | |
Client ID | |
Find service entries array | |
Offer service entries array | |
Eventgroup array | |
Options array | |
Session ID | Dynamic field |
Interval of packet | |
Status cache of the previous message | Communication status parameter |
The estimated status of the next message |
Multi-GRU Architecture | |
---|---|
Layer | Output Dimension |
First stacked GRU per ID | [, ] |
Second stacked GRU per ID | [1, ] |
Concatenation | [1,] |
Linear | [1,3] |
Hyperparameter | Range |
---|---|
[2, 10] | |
Lr | [0.001, 0.01] |
β1 | [0.9, 0.9999] |
β2 | [0.9, 0.9999] |
Message ID | Number of Signals | Type | Signal Description |
---|---|---|---|
0x14720011 | 2 | Event | Brake pressure and throttle opening |
0x14720012 | 2 | Event | Preceding vehicle speed and collision warning time |
0x27590010 | 6 | Event | Distance, doppler velocity and degree relative to preceding vehicle from sensor 1 and sensor 2. |
0x36120009 | 3 | Event | Velocity, heading and y-axis rotation angle of the vehicle |
0x15880008 | 1 | Request-Response-RPC | Set air conditioning temperature |
0x15880007 | 1 | Fire & Forget-RPC | Turn on the air conditioning |
Total | Normal | Fuzzy | DoS | Abnormal Communication Process |
---|---|---|---|---|
144,574 | 55,010 | 43,867 | 12,188 | 33,509 |
Attack Type | Class Label (Value) | Train | Test |
---|---|---|---|
Spoof | Normal (1) | 22,025 | 5506 |
Tamper (0) | 22,037 | 5510 | |
Replay (2) | 22,038 | 5509 |
Model Type | lr | β1 | β2 | |
---|---|---|---|---|
Multi-GRU | 5 | 0.0089630704 | 0.933792409392 | 0.952802490181 |
single-GRU | 31 | 0.0043259137 | 0.939844012507 | 0.943045819607 |
Attack Type | Precision (%) | Recall (%) | F1-score | AUC | Accuracy (%) | |
---|---|---|---|---|---|---|
Multi-GRU | Tamper | 100 | 99.9274 | 0.9996 | 0.9996 | 99.7761 |
Normal | 99.7456 | 99.6370 | 0.9969 | 0.9975 | ||
Replay | 99.5833 | 99.7640 | 0.9967 | 0.9978 | ||
Single-GRU | Tamper | 100 | 99.9455 | 0.9997 | 0.9997 | 97.4039 |
Normal | 95.2457 | 97.0780 | 0.9615 | 0.9733 | ||
Replay | 97.00 | 95.19 | 0.9609 | 0.9686 |
Multi-GRU | Single-GRU | |
---|---|---|
Inference time per sequence (ms) | 21.5838 | 31.7356 |
Inference time per message (ms) | 0.2372 | 0.3488 |
Number of model parameters | 13,698 | 10,047 |
Flops | 205,855 | 945,128 |
Multi-GRU | Time Consumption with Only the CPU (ms/packet) | Time Consumption with GPU Acceleration (ms/packet) |
---|---|---|
Data pre-processing | 0.2994 | 0.2841 |
Model calculation | 0.3381 | 0.0823 |
Inference time in total | 0.6375 | 0.3664 |
Attack Type | Precision (%) | Recall (%) | F1-Score | Accuracy (%) | |
---|---|---|---|---|---|
Ratio = 40% | |||||
Multi-GRU | Tamper | 99.9816 | 98.8921 | 0.9943 | 97.7610 |
Normal | 94.0613 | 99.7459 | 0.9682 | ||
Replay | 99.5798 | 94.6451 | 0.9705 | ||
Single-GRU | Tamper | 100 | 99.7821 | 0.9989 | 66.5779 |
Normal | 49.9454 | 99.6189 | 0.6653 | ||
Replay | 46.3415 | 0.3449 | 0.0068 | ||
Ratio = 20% | |||||
Multi-GRU | Tamper | 99.7245 | 98.6197 | 0.9916 | 96.6657 |
Normal | 91.2481 | 99.9093 | 0.9538 | ||
Replay | 99.8415 | 91.4685 | 0.9547 | ||
Single-GRU | Tamper | 100 | 99.8365 | 0.9992 | 66.7897 |
Normal | 50.1025 | 97.6225 | 0.6622 | ||
Replay | 55.1370 | 2.9225 | 0.0555 | ||
Ratio = 1% | |||||
Multi-GRU | Tamper | 100 | 81.5292 | 0.8982 | 61.0287 |
Normal | 46.2431 | 99.8548 | 0.6321 | ||
Replay | 68.1159 | 1.7063 | 0.0333 | ||
Single-GRU | Tamper | 100 | 97.5118 | 0.9874 | 65.8336 |
Normal | 49.3905 | 100 | 0.6612 | ||
Replay | 0 | 0 | 0 |
Traffic Type | Latency (ms) |
---|---|
Safety-relevant control | <1 |
Safety-relevant media | <1 |
Network control | None |
Safety-irrelevant control | <50 |
Safety-irrelevant media | <300 |
Best effort | None |
Batch Size | Time Consumption of Model Calculation with GPU Acceleration (ms/packet) |
---|---|
1 | 0.0823 |
5 | 0.0445 |
10 | 0.0275 |
50 | 0.0180 |
100 | 0.0161 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, F.; Yang, Z.; Zhang, Z.; Wang, Z.; Wang, B.; Wu, M. A Multi-Layer Intrusion Detection System for SOME/IP-Based In-Vehicle Network. Sensors 2023, 23, 4376. https://doi.org/10.3390/s23094376
Luo F, Yang Z, Zhang Z, Wang Z, Wang B, Wu M. A Multi-Layer Intrusion Detection System for SOME/IP-Based In-Vehicle Network. Sensors. 2023; 23(9):4376. https://doi.org/10.3390/s23094376
Chicago/Turabian StyleLuo, Feng, Zhenyu Yang, Zhaojing Zhang, Zitong Wang, Bowen Wang, and Mingzhi Wu. 2023. "A Multi-Layer Intrusion Detection System for SOME/IP-Based In-Vehicle Network" Sensors 23, no. 9: 4376. https://doi.org/10.3390/s23094376