An Investigation on the Possible Application Areas of Low-Cost PM Sensors for Air Quality Monitoring
<p>The SentinAir platform: (<b>a</b>) the device used in the experiment with the four PM sensors installed inside; (<b>b</b>) external view of the device acting as an LCM in this experiment.</p> "> Figure 2
<p>The miniaturized sensors used in this study: (<b>a</b>) the PMS5003 produced by Plantower and its size; (<b>b</b>) the SPS30 produced by Sensirion and its size.</p> "> Figure 3
<p>The simplified scheme of an optical counter for PM detection on which the working principle of LCSs used in this research is based.</p> "> Figure 4
<p>Depiction of the site where the ARPA station was located.</p> "> Figure 5
<p>Time series of sensors under evaluation compared with the reference device.</p> "> Figure 6
<p>(<b>a</b>) PMS5003(1); (<b>b</b>) PMS5003(2); (<b>c</b>) SPS30(1); (<b>d</b>) SPS30(2). Comparison between the four copies of the PM sensors involved in this research and the reference device. The solid line represents a linear regression fit computed through the ordinary least squares method, while the dashed line indicates the 1:1 reference line. In the corners of the figures, the statistics are reported. The slope and bias are related to the slope and the intercept of the linear fit.</p> "> Figure 7
<p>Time series of the relative humidity registered during the experiment.</p> "> Figure 8
<p>(<b>a</b>) PMS5003(1); (<b>b</b>) PMS5003(2); (<b>c</b>) SPS30(1); (<b>d</b>) SPS30(2). Time series of the sensor measurements compared with the reference device (thick black line). The dotted line is relative to the sensor data without the application of Equations (6) and (7). The straight thinner lines indicate the sensor measurements after applying the correction to include the humidity effect. The labels k = 0.5 and k = 0.62 indicate the different values of the “k” parameter in Equation (7).</p> ">
Abstract
:1. Introduction
2. Related Works and Study Description
3. Background
4. Materials and Methods
5. Results
5.1. Results of the Performance without Considering the Humidity Effect
5.2. Results after Applying the Correction Factor for the Humidity Effects
6. Discussion
6.1. Analysis of Results
6.2. EPA Guidelines Limits
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kheirbek, I.; Wheeler, K.; Walters, S.; Kass, D.; Matte, T. PM2.5 and ozone health impacts and disparities in New York City: Sensitivity to spatial and temporal resolution. Air Qual. Atmos. Health 2013, 6, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Yorifuji, T.; Bae, S.; Kashima, S.; Tsuda, T.; Doi, H.; Honda, Y.; Kim, H.; Hong, Y.C. Health impact assessment of PM10 and PM2.5 in 27 Southeast and East Asian cities. J. Occup. Environ. Med. 2015, 57, 751–756. [Google Scholar] [CrossRef]
- Makri, A.; Stilianakis, N.I. Vulnerability to air pollution health effects. Int. J. Hyg. Environ. Health 2018, 211, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., III; Dockery, D.W. Health Effects of Fine Particulate Air Pollution: Lines that Connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.; Bollasina, M.A.; Crippa, M.; Stevenson, D.S. Significant climate impacts of aerosol changes driven by growth in energy use and advances in emission control technology. Atmos. Chem. Phys. 2019, 19, 14517–14533. [Google Scholar] [CrossRef]
- Velasco, A.; Ferrero, R.; Gandino, F.; Montrucchio, B.; Rebaudengo, M. A mobile and low-cost system for environmental monitoring: A case study. Sensors 2016, 16, 710. [Google Scholar] [CrossRef]
- Mooney, D. A Guide for Local Authorities Purchasing Air Quality Monitoring Equipment; Technical Report; AEA Technology Plc: Harwell, UK, 2006. [Google Scholar]
- Kularatna, N.; Sudantha, B.H. An environmental air pollution monitoring system based on the IEEE 1451 standard for low cost requirements. IEEE Sens. J. 2008, 8, 415–422. [Google Scholar] [CrossRef]
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef]
- Karagulian, F.; Barbiere, M.; Kotsev, A.; Spinelle, L.; Gerboles, M.; Lagler, F.; Redon, N.; Crunaire, S.; Borowiak, A. Review of the Performance of Low-Cost Sensors for Air Quality Monitoring. Atmosphere 2019, 10, 506. [Google Scholar] [CrossRef]
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The Changing Paradigm of Air Pollution Monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Aye, L.; Ngo, T.D.; Zhou, J. Performance evaluation of low-cost air quality sensors: A review. Sci. Total Environ. 2022, 818, 151769. [Google Scholar] [CrossRef] [PubMed]
- Guidi, V.; Carotta, M.C.; Fabbri, B.; Gherardi, S.; Giberti, A.; Malagù, C. Array of sensors for detection of gaseous malodors in organic decomposition products. Sens. Actuators B Chem. 2012, 174, 349–354. [Google Scholar] [CrossRef]
- Suriano, D.; Rossi, R.; Alvisi, M.; Cassano, G.; Pfister, V.; Penza, M.; Trizio, L.; Brattoli, M.; Amodio, M.; De Gennaro, G. A Portable Sensor System for Air Pollution Monitoring and Malodours Olfactometric Control. In Sensors and Microsystems: AISEM 2011 Proceedings; Lecture Notes in Electrical Engineering; Springer: Boston, MA, USA, 2012; Volume 109. [Google Scholar] [CrossRef]
- Cavaliere, A.; Carotenuto, F.; Di Gennaro, F.; Gioli, B.; Gualtieri, G.; Martelli, F.; Matese, A.; Toscano, P.; Vagnoli, C.; Zaldei, A. Development of Low-Cost Air Quality Stations for Next Generation Monitoring Networks: Calibration and Validation of PM2.5 and PM10 Sensors. Sensors 2018, 18, 2843. [Google Scholar] [CrossRef] [PubMed]
- Lewis, A.; Edwards, P. Validate personal air-pollution sensors. Nature 2016, 535, 29–31. [Google Scholar] [CrossRef]
- AQ-SPEC; South Coast Air Quality Management District. South Coast Air Quality Management District Air Quality Sensor Performance Evaluation Reports. Available online: http://www.aqmd.gov/aq-spec/evaluations#&MainContent_C001_Col00=2 (accessed on 9 February 2023).
- Williams, R.; Kilaru, V.; Snyder, E.; Kaufman, A.; Dye, T.; Rutter, A.; Russell, A.; Hafner, H. Air Sensor Guidebook; US Environmental Protection Agency: Washington, DC, USA, 2014. [Google Scholar]
- Trizio, L.; Brattoli, M.; De Gennaro, G.; Suriano, D.; Rossi, R.; Alvisi, M.; Cassano, G.; Pfister, V.; Penza, M. Application of artificial neural networks to a gas sensor-array database for environmental monitoring. In Sensors and Microsystems; Springer: Boston, MA, USA, 2012; pp. 139–144. [Google Scholar] [CrossRef]
- Suriano, D.; Penza, M. Assessment of the Performance of a Low-Cost Air Quality Monitor in an Indoor Environment through Different Calibration Models. Atmosphere 2022, 13, 567. [Google Scholar] [CrossRef]
- Gao, M.; Cao, J.; Seto, E. A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi’an, China. Environ. Pollut. 2015, 199, 56–65. [Google Scholar] [CrossRef]
- Vogt, M.; Schneider, P.; Castell, N.; Hamer, P. Assessment of Low-Cost Particulate Matter Sensor Systems against Optical and Gravimetric Methods in a Field Co-Location in Norway. Atmosphere 2021, 12, 961. [Google Scholar] [CrossRef]
- Kosmopoulos, G.; Salamalikis, V.; Pandis, S.N.; Yannopoulos, P.; Bloutsos, A.A.; Kazantzidis, A. Low-cost sensors for measuring airborne particulate matter: Field evaluation and calibration at a South-Eastern European site. Sci. Total Environ. 2020, 748, 141396. [Google Scholar] [CrossRef]
- Masic, A.; Bibic, D.; Pikula, B.; Blazevic, A.; Huremovic, J.; Zero, S. Evaluation of optical particulate matter sensors under realistic conditions of strong and mild urban pollution. Atmos. Meas. Tech. 2020, 13, 6427–6443. [Google Scholar] [CrossRef]
- Han, I.; Symanski, E.; Stock, T.H. Feasibility of using low-cost portable particle monitors for measurement of fine and coarse particulate matter in urban ambient air. J. Air Waste Manag. Assoc. 2017, 67, 330–340. [Google Scholar] [CrossRef]
- Jovašević-Stojanović, M.; Bartonova, A.; Topalović, D.; Lazović, I.; Pokrić, B.; Ristovski, Z. On the use of small and cheaper sensors and devices for indicative citizen-based monitoring of respirable particulate matter. Environ. Pollut. 2015, 206, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.U.; Khan, M.E.; Hasan, M.; Zakri, W.; Alhazmi, W.; Islam, T. An Efficient Wireless Sensor Network Based on the ESP-MESH Protocol for Indoor and Outdoor Air Quality Monitoring. Sustainability 2022, 14, 16630. [Google Scholar] [CrossRef]
- Plantower. Available online: www.plantower.com (accessed on 9 February 2023).
- Sensirion. Available online: www.sensirion.com (accessed on 9 February 2023).
- Website Page of ARPA Puglia. Available online: www.arpa.puglia.it (accessed on 9 February 2023).
- Website Page of ARPA Puglia Monitoring Data. Available online: http://old.arpa.puglia.it/web/guest/qariainq2 (accessed on 9 February 2023).
- Zamora, M.L.; Rice, J.; Koehler, K. One year evaluation of three low-cost PM2.5 monitors. Atmos. Environ. 2020, 235, 117615. [Google Scholar] [CrossRef] [PubMed]
- SentinAir Project Repository. Available online: https://github.com/domenico-suriano/SentinAir (accessed on 9 February 2023).
- Suriano, D. A portable air quality monitoring unit and a modular, flexible tool for on-field evaluation and calibration of low-cost gas sensors. HardwareX 2021, 9, e00198. [Google Scholar] [CrossRef] [PubMed]
- Suriano, D. SentinAir system software: A flexible tool for data acquisition from heterogeneous sensors and devices. SoftwareX 2020, 12, 100589. [Google Scholar] [CrossRef]
- Suriano, D.; Cassano, G.; Penza, M. Design and Development of a Flexible, Plug-and-Play, Cost-Effective Tool for on-Field Evaluation of Gas Sensors. J. Sens. 2020, 2020, 8812025. [Google Scholar] [CrossRef]
- Raspberry. Available online: www.raspberrypi.com (accessed on 9 February 2023).
- Abelectronics. Available online: https://www.abelectronics.co.uk (accessed on 9 February 2023).
- Python. Available online: https://www.python.org (accessed on 9 February 2023).
- Scikit. Available online: https://scikit-learn.org/stable/index.html (accessed on 9 February 2023).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. JMLR 2011, 12, 2825–2830. [Google Scholar]
- Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.; et al. API design for machine learning software: Experiences from the scikit-learn project. arXiv 2013, arXiv:1309.0238v1. [Google Scholar]
- Crilley, L.R.; Shaw, M.; Pound, R.; Kramer, L.J.; Price, R.; Young, S.; Lewis, A.C.; Pope, F.D. Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring. Atmos. Meas. Tech. 2018, 11, 709–720. [Google Scholar] [CrossRef]
- Di Antonio, A.; Popoola, O.A.M.; Ouyang, B.; Saffell, J.; Jones, R.L. Developing a Relative Humidity Correction for Low-Cost Sensors Measuring Ambient Particulate Matter. Sensors 2018, 18, 2790. [Google Scholar] [CrossRef] [PubMed]
Tier | Application Area | Pollutants | MNB | CV | Application Examples |
---|---|---|---|---|---|
I | Education and information | All | −0.5 < MNB < 0.5 | CV < 0.5 | Providing informal information about the presence of a pollutant; the use of sensors as teaching tools |
II | Hotspot identification and characterization | All | −0.3 < MNB < 0.3 | CV < 0.3 | The identification of emission sources of pollutants such as heavy traffic or industrial facilities |
III | Supplemental monitoring | O3, NO2, PM, CO, SO2, and TVOCs | −0.2 < MNB < 0.2 | CV < 0.2 | Supplementing the regulatory network monitoring for improving the spatio-temporal resolution of pollutant maps |
IV | Personal exposure monitoring | All | −0.3 < MNB < 0.3 | CV < 0.3 | These sensors can be used in mobile monitors of a size that can be easily carried by users for measuring pollutant concentrations in indoor/outdoor environments |
V | Regulatory monitoring | O3 CO, SO2, PM10, PM2.5, and NO2 | −0.07 < MNB < 0.07; −0.1 < MNB < 0.1; −0.15 < MNB < 0.15 | CV < 0.07 CV < 0.2 CV < 0.15 | Pollutant monitoring to determine if an area complies with the national ambient air quality standards |
Device Name | Cost (EUR) | Manufacturer | Device Type |
---|---|---|---|
PMS5003 | ~20 | Plantower | LCS |
SPS30 | ~50 | Sensirion | LCS |
OPC-N2 | ~350 | Alphasense | LCS |
SDS011 | ~33 | Nova Fitness | LCS |
PurpleAir PA-II | ~190 | PurpleAir | LCM |
Airly PM | ~900 | Airly | LCM |
Airquality Egg 2022 | ~630 | Airquality Egg | LCM |
TSI Bluesky | ~380 | TSI | LCM |
PMS5003(2) | PMS5003(1) | SPS30(2) | SPS30(1) | |
---|---|---|---|---|
PMS5003(2) | 1.000 | 0.999 | 0.790 | 0.819 |
PMS5003(1) | 0.999 | 1.000 | 0.785 | 0.813 |
SPS30(2) | 0.790 | 0.785 | 1.000 | 0.997 |
SPS30(1) | 0.819 | 0.813 | 0.997 | 1.000 |
Sensor | R2 | MAE | RMSE | Slope | Bias | MNB | CV |
---|---|---|---|---|---|---|---|
PMS5003(2) | 0.61 | 9.56 | 12.09 | 1.41 | −4.06 | 0.14 | 1.96% |
PMS5003(1) | 0.61 | 9.3 | 11.63 | 1.38 | −4.34 | ||
SPS30(2) | 0.55 | 9.19 | 11.02 | 0.60 | −0.79 | −0.44 | 2.76% |
SPS30(1) | 0.57 | 9.47 | 11.26 | 0.59 | −1.0 |
Sensor | R2 | MAE | RMSE | Slope | Bias |
---|---|---|---|---|---|
PMS5003(2) | 0.61 | 9.56 | 12.09 | 1.41 | −4.06 |
PMS5003(2) (k = 0.5) | 0.65 | 6.59 | 8.24 | 0.81 | −11.48 |
PMS5003(2) (k = 0.62) | 0.65 | 7.21 | 8.84 | 0.74 | −12.62 |
PMS5003(1) | 0.61 | 9.3 | 11.63 | 1.38 | −4.34 |
PMS5003(1) (k = 0.5) | 0.65 | 6.81 | 8.5 | 0.75 | −12.59 |
PMS5003(1) (k = 0.62) | 0.65 | 7.21 | 8.84 | 0.81 | −11.48 |
SPS30(2) | 0.55 | 9.19 | 11.02 | 0.60 | −0.79 |
SPS30(2) (k = 0.5) | 0.50 | 13.31 | 15.03 | 1.42 | −7.23 |
SPS30(2) (k = 0.62) | 0.48 | 13.85 | 15.6 | 1.52 | −6.81 |
SPS30(1) | 0.57 | 9.47 | 11.26 | 0.59 | −1.0 |
SPS30(1) (k = 0.5) | 0.52 | 13.56 | 15.24 | 1.50 | −6.72 |
SPS30(1) (k = 0.62) | 0.51 | 14.1 | 15.8 | 1.62 | −6.28 |
LCS Model | LCM Model | R2 | RMSE | MAE | CV | Slope | Bias | Reference |
---|---|---|---|---|---|---|---|---|
PMS5003 | SentinAir | 0.61 | 11.63–12.09 | 9.3–9.56 | 1.96% | 1.38–1.41 | −4.06/−4.34 | This study |
PMS5003 | Airly | 0.27–0.47 | 20.5–21.4 | 16.4–17.8 | 1.3% | 1.17–1.24 | −23.4/−46.3 | AQ-SPEC [18] |
PMS5003 | Airly | 0.71–0.89 | 3.79–11.29 | - | - | 0.64–0.7 | −0.11/−1.61 | Castell [23] |
PMS5003 | Airquality Egg 2022 | 0.27–0.62 | 23.1–24.9 | 16.3–18.6 | 4.2% | 1.01–1.72 | −24.6/−29.14 | AQ-SPEC [18] |
PMS5003 | PurpleAir PA-II | 0.68–0.74 | - | - | ≅ 0% | 1.21–1.70 | −0.6/−20.2 | AQ-SPEC [18] |
PMS5003 | Redspira | 0.35–0.52 | 31.2–35.3 | 28–32.6 | 5.8% | 1.02–1.37 | −37.1/−41.4 | AQ-SPEC [18] |
PMS5003 | Smart citizen kit II | 0.10–0.17 | - | - | 6% | 2.61–3.05 | −157.0/−198.6 | AQ-SPEC [18] |
PMS5003 | Lunar outpost | 0.06–0.08 | - | - | 4.3% | 2.63–3.38 | −124.3/−140.9 | AQ-SPEC [18] |
SPS30 | Ensense | 0.9 | 1.92–2.26 | - | z- | 0.26–0.32 | −9.39/−9.79 | Castell [23] |
SPS30 | TSI Bluesky | 0.28–0.34 | - | - | 11% | 0.33–0.53 | −4.5/−11.6 | AQ-SPEC [18] |
SPS30 | Atmotube Pro | 0.31–0.39 | - | - | 5.6% | 0.83–0.98 | −17.0/−31.4 | AQ-SPEC [18] |
SPS30 | - | 0.18–0.30 | - | - | 2.4% | 0.77–1.61 | −18.3/−19.9 | AQ-SPEC [18] |
SPS30 | SentinAir | 0.55–0.57 | 9.19–9.47 | 11.02–11.26 | 2.76% | 0.59–0.60 | −0.79/−1.0 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suriano, D.; Prato, M. An Investigation on the Possible Application Areas of Low-Cost PM Sensors for Air Quality Monitoring. Sensors 2023, 23, 3976. https://doi.org/10.3390/s23083976
Suriano D, Prato M. An Investigation on the Possible Application Areas of Low-Cost PM Sensors for Air Quality Monitoring. Sensors. 2023; 23(8):3976. https://doi.org/10.3390/s23083976
Chicago/Turabian StyleSuriano, Domenico, and Mario Prato. 2023. "An Investigation on the Possible Application Areas of Low-Cost PM Sensors for Air Quality Monitoring" Sensors 23, no. 8: 3976. https://doi.org/10.3390/s23083976
APA StyleSuriano, D., & Prato, M. (2023). An Investigation on the Possible Application Areas of Low-Cost PM Sensors for Air Quality Monitoring. Sensors, 23(8), 3976. https://doi.org/10.3390/s23083976