Comparison of Machine Learning Models for Brain Age Prediction Using Six Imaging Modalities on Middle-Aged and Older Adults
<p>UKB participant inclusion chart.</p> "> Figure 2
<p>The distributions of chronological ages of the training, test sets, and whole cohort.</p> "> Figure 3
<p>Pearson correlation matrix of chronological age and estimated brain age of six imaging modalities via six ML algorithms.</p> "> Figure 4
<p>Pearson correlation matrix of chronological age and estimated brain age of multimodality via six ML algorithms.</p> "> Figure 5
<p>A Manhattan plot of -log 10 of FDR corrected p values (<span class="html-italic">y</span> axis) by non-IDPs (<span class="html-italic">x</span> axis).</p> "> Figure 6
<p>Ranking results of seven ML model on five non-IDPs.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant
2.2. Imaging Derived Phenotypes (IDPs)
2.3. Non-Imaging Derived Phenotypes (Non-IDPs)
2.4. ML Models
2.4.1. Lasso
2.4.2. RVR
2.4.3. SVR
2.4.4. XgBoost
2.4.5. CatBoost
2.4.6. MLP
2.5. BrainAGE
2.6. Bias Correction in Brain Age Prediction
2.7. Ensemble Learning
2.8. Statistical Analysis
3. Results
3.1. Brain Age Prediction Models
3.2. Leave-One-Modality-Out Analysis
3.3. Brain Age Bias Correction for Multi-Modality Models
3.4. BrainAGE Variance Explained by Non-IDPs
4. Discussion
4.1. Image Modalities and ML Approaches
4.2. The Interpretability of BrainAGE
4.3. Limitation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baecker, L.; Garcia-Dias, R.; Vieira, S.; Scarpazza, C.; Mechelli, A. Machine Learning for Brain Age Prediction: Introduction to Methods and Clinical Applications. EBioMedicine 2021, 72, 103600. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.H.; Franke, K. Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers. Trends Neurosci. 2017, 40, 681–690. [Google Scholar] [CrossRef] [Green Version]
- Gaser, C.; Franke, K.; Klöppel, S.; Koutsouleris, N.; Sauer, H. Alzheimer’s Disease Neuroimaging Initiative BrainAGE in Mild Cognitive Impaired Patients: Predicting the Conversion to Alzheimer’s Disease. PLoS ONE 2013, 8, e67346. [Google Scholar] [CrossRef] [Green Version]
- Franke, K.; Ziegler, G.; Klöppel, S.; Gaser, C. Alzheimer’s Disease Neuroimaging Initiative Estimating the Age of Healthy Subjects from T1-Weighted MRI Scans Using Kernel Methods: Exploring the Influence of Various Parameters. Neuroimage 2010, 50, 883–892. [Google Scholar] [CrossRef]
- Franke, K.; Gaser, C. Ten Years of BrainAGE as a Neuroimaging Biomarker of Brain Aging: What Insights Have We Gained? Front. Neurol. 2019, 10, 789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franke, K.; Gaser, C. Longitudinal Changes in Individual BrainAGE in Healthy Aging, Mild Cognitive Impairment, and Alzheimer’s Disease. GeroPsych J. Gerontopsychol. Geriatr. Psychiatry 2012, 25, 235–245. [Google Scholar] [CrossRef]
- Cole, J.H.; Leech, R.; Sharp, D.J. Alzheimer’s Disease Neuroimaging Initiative Prediction of Brain Age Suggests Accelerated Atrophy after Traumatic Brain Injury. Ann. Neurol. 2015, 77, 571–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Bézenac, C.E.; Adan, G.; Weber, B.; Keller, S.S. Association of Epilepsy Surgery With Changes in Imaging-Defined Brain Age. Neurology 2021, 97, e554–e563. [Google Scholar] [CrossRef] [PubMed]
- Høgestøl, E.A.; Kaufmann, T.; Nygaard, G.O.; Beyer, M.K.; Sowa, P.; Nordvik, J.E.; Kolskår, K.; Richard, G.; Andreassen, O.A.; Harbo, H.F.; et al. Cross-Sectional and Longitudinal MRI Brain Scans Reveal Accelerated Brain Aging in Multiple Sclerosis. Front. Neurol. 2019, 10, 450. [Google Scholar] [CrossRef] [Green Version]
- Koutsouleris, N.; Davatzikos, C.; Borgwardt, S.; Gaser, C.; Bottlender, R.; Frodl, T.; Falkai, P.; Riecher-Rössler, A.; Möller, H.-J.; Reiser, M.; et al. Accelerated Brain Aging in Schizophrenia and beyond: A Neuroanatomical Marker of Psychiatric Disorders. Schizophr. Bull. 2014, 40, 1140–1153. [Google Scholar] [CrossRef] [Green Version]
- Van Gestel, H.; Franke, K.; Petite, J.; Slaney, C.; Garnham, J.; Helmick, C.; Johnson, K.; Uher, R.; Alda, M.; Hajek, T. Brain Age in Bipolar Disorders: Effects of Lithium Treatment. Aust. N. Z. J. Psychiatry 2019, 53, 1179–1188. [Google Scholar] [CrossRef]
- Han, S.; Chen, Y.; Zheng, R.; Li, S.; Jiang, Y.; Wang, C.; Fang, K.; Yang, Z.; Liu, L.; Zhou, B.; et al. The Stage-Specifically Accelerated Brain Aging in Never-Treated First-Episode Patients with Depression. Hum. Brain Mapp. 2021, 42, 3656–3666. [Google Scholar] [CrossRef]
- Cole, J.H. Multimodality Neuroimaging Brain-Age in UK Biobank: Relationship to Biomedical, Lifestyle, and Cognitive Factors. Neurobiol. Aging 2020, 92, 34–42. [Google Scholar] [CrossRef]
- Lombardi, A.; Monaco, A.; Donvito, G.; Amoroso, N.; Bellotti, R.; Tangaro, S. Brain Age Prediction With Morphological Features Using Deep Neural Networks: Results From Predictive Analytic Competition 2019. Front. Psychiatry 2020, 11, 619629. [Google Scholar] [CrossRef] [PubMed]
- Varikuti, D.P.; Genon, S.; Sotiras, A.; Schwender, H.; Hoffstaedter, F.; Patil, K.R.; Jockwitz, C.; Caspers, S.; Moebus, S.; Amunts, K.; et al. Evaluation of Non-Negative Matrix Factorization of Grey Matter in Age Prediction. Neuroimage 2018, 173, 394–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Dias, M.F.M.; Carvalho, P.; Duarte, J.V.; Castelo-Branco, M. Deformation Fields: A New Source of Information to Predict Brain Age. J. Neural Eng. 2022, 19, 036025. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, B.; Hasan, K.M.; Soares, J.C. Prediction of Individual Subject’s Age across the Human Lifespan Using Diffusion Tensor Imaging: A Machine Learning Approach. Neuroimage 2013, 75, 58–67. [Google Scholar] [CrossRef]
- Baecker, L.; Dafflon, J.; da Costa, P.F.; Garcia-Dias, R.; Vieira, S.; Scarpazza, C.; Calhoun, V.D.; Sato, J.R.; Mechelli, A.; Pinaya, W.H.L. Brain Age Prediction: A Comparison between Machine Learning Models Using Region- and Voxel-Based Morphometric Data. Hum. Brain Mapp. 2021, 42, 2332–2346. [Google Scholar] [CrossRef]
- Le, T.T.; Kuplicki, R.T.; McKinney, B.A.; Yeh, H.-W.; Thompson, W.K.; Paulus, M.P. A Nonlinear Simulation Framework Supports Adjusting for Age When Analyzing BrainAGE. Front. Aging Neurosci. 2018, 10, 317. [Google Scholar] [CrossRef] [Green Version]
- Niu, X.; Zhang, F.; Kounios, J.; Liang, H. Improved Prediction of Brain Age Using Multimodal Neuroimaging Data. Hum. Brain Mapp. 2020, 41, 1626–1643. [Google Scholar] [CrossRef] [Green Version]
- Sendi, M.S.E.; Salat, D.H.; Calhoun, V.D. Brain Age Gap Difference between Healthy and Mild Dementia Subjects: Functional Network Connectivity Analysis. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2021, 2021, 1636–1639. [Google Scholar] [CrossRef] [PubMed]
- Vergun, S.; Deshpande, A.S.; Meier, T.B.; Song, J.; Tudorascu, D.L.; Nair, V.A.; Singh, V.; Biswal, B.B.; Meyerand, M.E.; Birn, R.M.; et al. Characterizing Functional Connectivity Differences in Aging Adults Using Machine Learning on Resting State FMRI Data. Front. Comput. Neurosci. 2013, 7, 38. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Jin, C.; Fu, Z.; Zhang, B.; Bin, G.; Wu, S. Predicting Healthy Older Adult’s Brain Age Based on Structural Connectivity Networks Using Artificial Neural Networks. Comput. Methods Programs Biomed. 2016, 125, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Anatürk, M.; Kaufmann, T.; Cole, J.H.; Suri, S.; Griffanti, L.; Zsoldos, E.; Filippini, N.; Singh-Manoux, A.; Kivimäki, M.; Westlye, L.T.; et al. Prediction of Brain Age and Cognitive Age: Quantifying Brain and Cognitive Maintenance in Aging. Hum. Brain Mapp. 2021, 42, 1626–1640. [Google Scholar] [CrossRef] [PubMed]
- de Lange, A.-M.G.; Anatürk, M.; Suri, S.; Kaufmann, T.; Cole, J.H.; Griffanti, L.; Zsoldos, E.; Jensen, D.E.A.; Filippini, N.; Singh-Manoux, A.; et al. Multimodal Brain-Age Prediction and Cardiovascular Risk: The Whitehall II MRI Sub-Study. Neuroimage 2020, 222, 117292. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Zhang, G.; Wang, J.; Tian, M.; Wu, S. Utilizing Transfer Learning of Pre-Trained AlexNet and Relevance Vector Machine for Regression for Predicting Healthy Older Adult’s Brain Age from Structural MRI. Multimed. Tools Appl. 2021, 80, 24719–24735. [Google Scholar] [CrossRef]
- Valizadeh, S.A.; Hänggi, J.; Mérillat, S.; Jäncke, L. Age Prediction on the Basis of Brain Anatomical Measures. Hum. Brain Mapp. 2017, 38, 997–1008. [Google Scholar] [CrossRef]
- Miller, K.L.; Alfaro-Almagro, F.; Bangerter, N.K.; Thomas, D.L.; Yacoub, E.; Xu, J.; Bartsch, A.J.; Jbabdi, S.; Sotiropoulos, S.N.; Andersson, J.L.R.; et al. Multimodal Population Brain Imaging in the UK Biobank Prospective Epidemiological Study. Nat. Neurosci. 2016, 19, 1523–1536. [Google Scholar] [CrossRef] [Green Version]
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Tipping, M.E. Sparse Bayesian Learning and the Relevance Vector Machine. J. Mach. Learn. Res. 2001, 1, 211–244. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Fan, Y.; Bhatt, P.; Davatzikos, C. High-Dimensional Pattern Regression Using Machine Learning: From Medical Images to Continuous Clinical Variables. Neuroimage 2010, 50, 1519–1535. [Google Scholar] [CrossRef] [Green Version]
- Cortes, C.; Vapnik, V.N. Support Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, New York, NY, USA, 13 August 2016; pp. 785–794. [Google Scholar]
- Dong, F.; Li, Q.; Xu, D.; Xiu, W.; Zeng, Q.; Zhu, X.; Xu, F.; Jiang, B.; Zhang, M. Differentiation between Pilocytic Astrocytoma and Glioblastoma: A Decision Tree Model Using Contrast-Enhanced Magnetic Resonance Imaging-Derived Quantitative Radiomic Features. Eur. Radiol. 2019, 29, 3968–3975. [Google Scholar] [CrossRef]
- Taravat, A.; Proud, S.; Peronaci, S.; Del Frate, F.; Oppelt, N. Multilayer Perceptron Neural Networks Model for Meteosat Second Generation SEVIRI Daytime Cloud Masking. Remote Sens. 2015, 7, 1529–1539. [Google Scholar] [CrossRef] [Green Version]
- Galton, F. Regression Towards Mediocrity in Hereditary Stature. J. Anthropol. Inst. Great Br. Irel. 1886, 15, 246–263. [Google Scholar] [CrossRef] [Green Version]
- de Lange, A.-M.G.; Cole, J.H. Commentary: Correction Procedures in Brain-Age Prediction. Neuroimage Clin. 2020, 26, 102229. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Vidaurre, D.; Alfaro-Almagro, F.; Nichols, T.E.; Miller, K.L. Estimation of Brain Age Delta from Brain Imaging. Neuroimage 2019, 200, 528–539. [Google Scholar] [CrossRef]
- Beheshti, I.; Nugent, S.; Potvin, O.; Duchesne, S. Bias-Adjustment in Neuroimaging-Based Brain Age Frameworks: A Robust Scheme. Neuroimage Clin. 2019, 24, 102063. [Google Scholar] [CrossRef]
- Kolbeinsson, A.; Filippi, S.; Panagakis, Y.; Matthews, P.M.; Elliott, P.; Dehghan, A.; Tzoulaki, I. Accelerated MRI-Predicted Brain Ageing and Its Associations with Cardiometabolic and Brain Disorders. Sci. Rep. 2020, 10, 19940. [Google Scholar] [CrossRef]
- Cherbuin, N.; Walsh, E.I.; Shaw, M.; Luders, E.; Anstey, K.J.; Sachdev, P.S.; Abhayaratna, W.P.; Gaser, C. Optimal Blood Pressure Keeps Our Brains Younger. Front. Aging Neurosci. 2021, 13, 694982. [Google Scholar] [CrossRef] [PubMed]
- Franke, K.; Ristow, M.; Gaser, C. Alzheimer’s Disease Neuroimaging Initiative Gender-Specific Impact of Personal Health Parameters on Individual Brain Aging in Cognitively Unimpaired Elderly Subjects. Front. Aging Neurosci. 2014, 6, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouches, P.; Wilms, M.; Aulakh, A.; Langner, S.; Forkert, N.D. Multimodal Brain Age Prediction Fusing Morphometric and Imaging Data and Association with Cardiovascular Risk Factors. Front. Neurol. 2022, 13, 979774. [Google Scholar] [CrossRef] [PubMed]
- Beck, D.; de Lange, A.-M.G.; Pedersen, M.L.; Alnaes, D.; Maximov, I.I.; Voldsbekk, I.; Richard, G.; Sanders, A.-M.; Ulrichsen, K.M.; Dørum, E.S.; et al. Cardiometabolic Risk Factors Associated with Brain Age and Accelerate Brain Ageing. Hum. Brain Mapp. 2022, 43, 700–720. [Google Scholar] [CrossRef]
- Leonardsen, E.H.; Peng, H.; Kaufmann, T.; Agartz, I.; Andreassen, O.A.; Celius, E.G.; Espeseth, T.; Harbo, H.F.; Høgestøl, E.A.; de Lange, A.-M.; et al. Deep Neural Networks Learn General and Clinically Relevant Representations of the Ageing Brain. Neuroimage 2022, 256, 119210. [Google Scholar] [CrossRef]
- Ning, K.; Zhao, L.; Matloff, W.; Sun, F.; Toga, A.W. Association of Relative Brain Age with Tobacco Smoking, Alcohol Consumption, and Genetic Variants. Sci. Rep. 2020, 10, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guggenmos, M.; Schmack, K.; Sekutowicz, M.; Garbusow, M.; Sebold, M.; Sommer, C.; Smolka, M.N.; Wittchen, H.-U.; Zimmermann, U.S.; Heinz, A.; et al. Quantitative Neurobiological Evidence for Accelerated Brain Aging in Alcohol Dependence. Transl. Psychiatry 2017, 7, 1279. [Google Scholar] [CrossRef] [Green Version]
- Franke, K.; Gaser, C.; Manor, B.; Novak, V. Advanced BrainAGE in Older Adults with Type 2 Diabetes Mellitus. Front. Aging Neurosci. 2013, 5, 90. [Google Scholar] [CrossRef]
- Brands, A.M.A.; Kessels, R.P.C.; Hoogma, R.P.L.M.; Henselmans, J.M.L.; van der Beek Boter, J.W.; Kappelle, L.J.; de Haan, E.H.F.; Biessels, G.J. Cognitive Performance, Psychological Well-Being, and Brain Magnetic Resonance Imaging in Older Patients with Type 1 Diabetes. Diabetes 2006, 55, 1800–1806. [Google Scholar] [CrossRef] [Green Version]
- Jha, M.K.; Chin Fatt, C.R.; Minhajuddin, A.; Mayes, T.L.; Berry, J.D.; Trivedi, M.H. Accelerated Brain Aging in Individuals with Diabetes: Association with Poor Glycemic Control and Increased All-Cause Mortality. Psychoneuroendocrinology 2022, 145, 105921. [Google Scholar] [CrossRef]
- Bittner, N.; Jockwitz, C.; Franke, K.; Gaser, C.; Moebus, S.; Bayen, U.J.; Amunts, K.; Caspers, S. When Your Brain Looks Older than Expected: Combined Lifestyle Risk and BrainAGE. Brain Struct. Funct. 2021, 226, 621–645. [Google Scholar] [CrossRef] [PubMed]
- Linli, Z.; Feng, J.; Zhao, W.; Guo, S. Associations between Smoking and Accelerated Brain Ageing. Prog. Neuropsychopharmacol. Biol. Psychiatry 2022, 113, 110471. [Google Scholar] [CrossRef]
- Mo, C.; Wang, J.; Ye, Z.; Ke, H.; Liu, S.; Hatch, K.; Gao, S.; Magidson, J.; Chen, C.; Mitchell, B.D.; et al. Evaluating the Causal Effect of Tobacco Smoking on White Matter Brain Aging: A Two-Sample Mendelian Randomization Analysis in UK Biobank. Addiction 2023, 118, 739–749. [Google Scholar] [CrossRef]
- Vu, N.Q.; Aizenstein, H.J. Depression in the Elderly: Brain Correlates, Neuropsychological Findings, and Role of Vascular Lesion Load. Curr. Opin. Neurol. 2013, 26, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, Y. Alzheimer’s Disease Neuroimaging Initiative Towards a Holistic Cortical Thickness Descriptor: Heat Kernel-Based Grey Matter Morphology Signatures. Neuroimage 2017, 147, 360–380. [Google Scholar] [CrossRef] [Green Version]
- Puhlmann, L.M.C.; Valk, S.L.; Engert, V.; Bernhardt, B.C.; Lin, J.; Epel, E.S.; Vrticka, P.; Singer, T. Association of Short-Term Change in Leukocyte Telomere Length With Cortical Thickness and Outcomes of Mental Training Among Healthy Adults: A Randomized Clinical Trial. JAMA Netw. Open 2019, 2, e199687. [Google Scholar] [CrossRef] [PubMed]
- Ha, Y.W.; Jang, H.; Koh, S.-B.; Noh, Y.; Lee, S.-K.; Seo, S.W.; Cho, J.; Kim, C. Reduced Brain Subcortical Volumes in Patients with Glaucoma: A Pilot Neuroimaging Study Using the Region-of-Interest-Based Approach. BMC Neurol. 2022, 22, 277. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Nuechterlein, K.H.; Phillips, O.; Hamilton, L.S.; Subotnik, K.L.; Asarnow, R.F.; Toga, A.W.; Narr, K.L. The Contributions of Disease and Genetic Factors towards Regional Cortical Thinning in Schizophrenia: The UCLA Family Study. Schizophr. Res. 2010, 123, 116–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Li, W.; Miao, W.; Dai, D.; Hua, J.; He, H. Age Estimation Using Cortical Surface Pattern Combining Thickness with Curvatures. Med. Biol. Eng. Comput. 2014, 52, 331–341. [Google Scholar] [CrossRef] [Green Version]
Demographic Information | Training Set | Test Set | Total |
---|---|---|---|
Number of participants | 14,000 | 13,842 | 27,842 |
Age (mean (SD)) | 63.8 (7.5) | 63.9 (7.5) | 63.9 (7.5) |
Sex (Male/Female) | 6629/7371 | 6494/7348 | 13,123/14,719 |
Modality | Imaging Protocol | Description of IDPs | UKB ID | IDPs | N | |
---|---|---|---|---|---|---|
T1 | FSL | Three-dimensional scrambled phase gradient echo sequence, image matrix 208 × 256 × 256 mm3, TI/TR = 880/2000 ms, voxel resolution 1 × 1 × 1 mm3 | anatomical measures of brain structures | 25000~25024, 25782~25920 | 164 | 40,680 |
Freesurfer | 26501~27772 | 1272 | 43,075 | |||
DWI | Planar echo imaging, image matrix 104 × 104 × 72 mm3, TE/TR = 92/3600 ms, voxel resolution 2 × 2 × 2 mm3. Two b values (b = 1000, 2000 s/mm2), 100 different directions in total, multi-band acceleration factor of 3 | the integrity of micro-structural tissue compartments and structural connectivity between pairs of brain regions | 25056~25730 | 675 | 39,022 | |
SWI | 3D dual-echo gradient echo sequence, TE1/TE2/TR = 9.4/20/27 ms, image matrix 256 × 288 × 48 mm3, voxel resolution 0.8 × 0.8 × 3 mm3 | venous vasculature, microbleeds or aspects of micro-structure | 25026~25039 | 14 | 35,937 | |
T2 | Liquid decay inversion recovery sequence, image matrix 192 × 256 × 256 mm3, TI/TR = 1800/5000 ms, voxel resolution 1.05 × 1 × 1 mm3 | the volume of WM lesions | 25781 | 1 | 39,898 | |
rsfMRI | Planar echo imaging, image matrix 88 × 88 × 64 mm3, TE/TR = 39/735 ms, voxel resolution 2.4 × 2.4 × 2.4 mm3, total 490 time points | the apparent connectivity between pairs of brain regions, and the amplitude of spontaneous fluctuation within each region | 25754~25755 | 76 | 40,594 | |
tfMRI | Planar echo imaging, image matrix 88 × 88 × 64 mm3, TE/TR = 39/735 ms, voxel resolution 2.4 × 2.4 × 2.4 mm3, total 332 time points | the strength of response to the specific task within a given brain mask | 25040, 25042, 25044, 25046, 25048, 25050, 25052, 25054, 25761~25768 | 16 | 35,499 | |
total | / | / | / | 2218 | 27,842 |
Non-IDPs | Description |
---|---|
Recruitment | Contains information about a participant’s arrival at the assessment center and the locations from which they were recruited. |
Touchscreen | Contains information from the touchscreen questionnaire completed at the assessment center and is divided into several sub-categories (sociodemographics, lifestyle and environment, early life factors, family history, psychosocial factors, health and medical history, and sex-specific factors). |
Verbal interview | Contains information based on a verbal interview conducted by trained staff at the assessment center and is divided into several sub-categories (early life factors, employment, medical conditions, medications, and operations). |
Physical measures | Contains information from physical measurements performed at the assessment center and is divided into sub-categories based on the type of physical measurement performed (blood pressure, carotid ultrasound, hearing test, hand grip strength, anthropometry, bone-densitometry of heel, spirometry, ECG at rest, and 12-lead ECG). |
MAE (Years) | ||||||||
---|---|---|---|---|---|---|---|---|
Method | T1 | DWI | SWI | T2 | rsfMRI | tfMRI | All Modality | |
FSL | Freesurfer | |||||||
Lasso | 3.945 | 3.127 | 3.587 | 6.253 | 5.301 | 5.281 | 5.969 | 2.741 |
RVR | 3.947 | 3.149 | 3.682 | 6.267 | 5.301 | 5.279 | 5.953 | 2.767 |
SVR | 3.957 | 3.180 | 3.576 | 6.253 | 5.288 | 5.286 | 5.955 | 2.860 |
XgBoost | 3.999 | 3.480 | 3.955 | 6.261 | 5.276 | 5.368 | 5.975 | 3.222 |
CatBoost | 3.930 | 3.265 | 3.742 | 6.256 | 5.272 | 5.300 | 5.956 | 2.970 |
MLP | 3.883 | 3.287 | 3.600 | 6.264 | 5.267 | 5.248 | 5.941 | 2.857 |
MAE (Years): Excluded Modality | |||||||||
---|---|---|---|---|---|---|---|---|---|
Method | T1 | T1 | DWI | SWI | T2 | rsfMRI | tfMRI | All Modality | |
FSL | Freesurfer | ||||||||
Lasso | 2.817 | 3.132 | 3.427 | 2.910 | 2.752 | 2.741 | 2.786 | 2.753 | 2.741 |
RVR | 2.838 | 3.154 | 3.423 | 2.938 | 2.780 | 2.769 | 2.826 | 2.786 | 2.767 |
SVR | 2.918 | 3.138 | 3.415 | 2.988 | 2.851 | 2.862 | 2.891 | 2.873 | 2.860 |
XgBoost | 3.311 | 3.477 | 3.758 | 3.301 | 3.218 | 3.238 | 3.271 | 3.222 | 3.222 |
CatBoost | 3.049 | 3.285 | 3.558 | 3.096 | 2.971 | 2.975 | 3.004 | 2.970 | 2.970 |
MLP | 2.945 | 3.165 | 3.447 | 3.044 | 2.807 | 2.876 | 2.924 | 2.857 | 2.857 |
Model | Corrected Slope | Uncorrected R2 | Corrected R2 | Delta R2 | Uncorrected MAE | Corrected MAE |
---|---|---|---|---|---|---|
Lasso | 0.980 | 0.787 | 0.850 | 0.063 | 2.741 | 2.450 |
RVR | 0.990 | 0.784 | 0.847 | 0.063 | 2.767 | 2.476 |
SVR | 0.980 | 0.770 | 0.830 | 0.060 | 2.860 | 2.577 |
XgBoost | 0.890 | 0.704 | 0.798 | 0.094 | 3.222 | 2.708 |
CatBoost | 0.860 | 0.747 | 0.800 | 0.053 | 2.970 | 2.673 |
MLP | 0.910 | 0.767 | 0.810 | 0.043 | 2.857 | 2.647 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, M.; Lin, L.; Jin, Y.; Kang, W.; Wu, S.; Sun, S. Comparison of Machine Learning Models for Brain Age Prediction Using Six Imaging Modalities on Middle-Aged and Older Adults. Sensors 2023, 23, 3622. https://doi.org/10.3390/s23073622
Xiong M, Lin L, Jin Y, Kang W, Wu S, Sun S. Comparison of Machine Learning Models for Brain Age Prediction Using Six Imaging Modalities on Middle-Aged and Older Adults. Sensors. 2023; 23(7):3622. https://doi.org/10.3390/s23073622
Chicago/Turabian StyleXiong, Min, Lan Lin, Yue Jin, Wenjie Kang, Shuicai Wu, and Shen Sun. 2023. "Comparison of Machine Learning Models for Brain Age Prediction Using Six Imaging Modalities on Middle-Aged and Older Adults" Sensors 23, no. 7: 3622. https://doi.org/10.3390/s23073622