Analysis of Intentional Electromagnetic Interference on GENEC Model Using Cylindrical Mode Matching
<p>The geometry of the GENEC model with multiple apertures.</p> "> Figure 2
<p>Simplified GENEC model with 4 apertures.</p> "> Figure 3
<p>Experiment for the Simplified GENEC model by an external incident wave.</p> "> Figure 4
<p>EO sensor probe in the GENEC model.</p> "> Figure 5
<p>Experimental block diagram of the EO measurement system with a noise immune anechoic chamber.</p> "> Figure 6
<p>Measurement and simulation positions P1 and P2.</p> "> Figure 7
<p>Comparison of the E−field Ey between the measurement and the proposed method: (<b>a</b>) P1; and (<b>b</b>) P2.</p> ">
Abstract
:1. Introduction
2. Cylindrical Mode Matching Formulation
3. Simulation and Measurement Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Radasky, W.A.; Baum, C.E.; Wik, M.W. Introduction to the special issue on high-power electromagnetics (HPEM) and intentional electromagnetic interference (IEMI). IEEE Trans. Electromagn. Compat. 2004, 46, 314–321. [Google Scholar] [CrossRef]
- Kang, W.-J.; Lee, K.-I.; Shin, J.-W.; So, J.-H.; Chung, Y.-S. An analysis of electromagnetic interference on RF circuits based on electromagnetic topology. Microw. Opt. Technol. Lett. 2014, 56, 2784–2789. [Google Scholar] [CrossRef]
- Park, Y.M.; Lee, Y.; Chung, Y.S.; Cheon, C.; Jung, H.K. Electromagnetic field penetration analysis of a rectangular aperture-backed cavity based on combination of electromagnetic topology and mode matching. Electromagnetics 2009, 29, 447–462. [Google Scholar] [CrossRef]
- Baum, C.E. Electromagnetic topology for the analysis and design of complex electromagnetic systems. Fast Electr. Opt. Meas. 1986, 108/109, 467–547. [Google Scholar]
- Baum, C.E. Electromagnetic Topology: A Formal Approach to the Analysis and Design of Complex Electronic Systems. Interact. Notes 1980, 400, 209–214. [Google Scholar]
- Baum, C.E.; Liu, T.K.; Tesche, F.M. On the Analysis of General Multiconductor Transmission-line Networks. Interact. Notes 1978, 350, 467–547. [Google Scholar]
- Parmantier, J.-P. First realistic simulation of effects of EM coupling in commercial aircraft wiring. Comput. Control Eng. J. 1998, 9, 52–56. [Google Scholar] [CrossRef]
- Kang, W.J.; Lee, V.O.; Mun, S.K.; Chung, Y.S.; Cheon, C.Y. A study for the influence of the EM waves on the cavity with multi-rectangular apertures using BLT equation. In Proceedings of the 2010 IEEE Antennas and Propagation Society International Symposium, Toronto, ON, Canada, 11–17 July 2010; pp. 1–4. [Google Scholar]
- Rabat, A.; Bonnet, P.; Drissi, K.E.K.; Girard, S. An analytical evaluation of the shielding effectiveness of enclosures containing complex apertures. IEEE Access 2021, 9, 147191–147200. [Google Scholar] [CrossRef]
- Ivanov, A.A.; Komnatnov, M.E. Analytical model for estimating the shielding effectiveness of cylindrical connectors. Proc. IOP Conf. Ser. Mater. Sci. Eng. 2019, 560, 1–6. [Google Scholar] [CrossRef]
- Chen, K.; Gao, M.; Zhou, X. A model for the prediction of the shielding effectiveness of cylindrical enclosure. AIP Adv. 2022, 12, 085309. [Google Scholar] [CrossRef]
- Cui, J.; Yu, Y.; Lu, Y. Calculation and Analysis of Characteristic Parameters for Lossy Resonator. Electronics 2023, 12, 7. [Google Scholar] [CrossRef]
- Lima, A.L.S.; Rosa, G.S.; Bergmann, J.R. A mode-matching solution for the study of cylindrical waveguide bifurcation via closed-form coupling integrals. AEU-Int. J. Electron. Commun. 2020, 118, 153135. [Google Scholar]
- Mautz, J.R.; Harrington, R.F. EM penetration into a conducting circular cylinder through a narrow slot, TE case. J. Electromagn. Waves Appl. 1989, 3, 307–336. [Google Scholar] [CrossRef]
- Mautz, J.R.; Harrington, R.F. EM penetration into a conducting circular cylinder through a narrow slot, TM case. J. Electromagn. Waves Appl. 1988, 2, 269–293. [Google Scholar] [CrossRef]
- Harrington, R.F.; Mautz, J.R. A generalized network formulation for aperture problem. IEEE Trans. Antennas Propagat. 1976, 24, 870–873. [Google Scholar] [CrossRef]
- Harrington, R.F. Time-Harmonic Electromagnetic Fields; McGraw-Hill: New York, NY, USA, 1961. [Google Scholar]
- El-Hajj, A.; Kabalan, K.Y.; Harrington, R.F. Characteristic modes of a slot in a conducting cylinder and their use for penetration and scattering, TE case. IEEE Trans. Antennas Propagat. 1992, 40, 156–161. [Google Scholar] [CrossRef]
- Kabalan, K.Y.; El-Haji, A.; Harrington, R.F. Characteristic modes of a slot in a conducting cylinder and their use for penetration and scattering, TM case. IEE Proc. H (Microw. Antennas Propag.) 1992, 139, 287–291. [Google Scholar] [CrossRef]
- Shumpert, J.D.; Butler, C.M. Penetration through slots in conducting cylinders—Part 1: TE case. IEEE Trans. Antennas Propagat. 1998, 46, 1612–1621. [Google Scholar] [CrossRef]
- Shumpert, J.D.; Butler, C.M. Penetration through slots in conducting cylinders—Part 2: TM case. IEEE Trans. Antennas Propagat. 1998, 46, 1622–1628. [Google Scholar] [CrossRef]
- Sommerfeld, A. Partial Differential Equations in Physics; Academic Press: New York, NY, USA, 1949. [Google Scholar]
- Senior, T.B. Electromagnetic field penetration into a cylindrical cavity. IEEE Trans. Electromagn. Compat. 1976, 18, 71–73. [Google Scholar] [CrossRef]
- Safavi-Naini, S.; Lee, S.W.; Mittra, R. Transmission of an EM wave through the aperture of a cylindrical cavity. IEEE Trans. Electromagn. Compat. 1977, 19, 74–81. [Google Scholar] [CrossRef]
- Fisahn, S.; Garbe, H.; Sabath, F. Protective properties of a generic missile enclosure to different electromagnetic influences. In Proceedings of the IEEE international Symposium on Electromagnetic Compatibility, Qingdao, China, 23–26 October 2007; pp. 1–6. [Google Scholar]
- Fisahn, S.; Koj, S.; Garbe, H. Analysis of the coupling of electromagnetic pulses into shielded enclosures of vulnerable systems. Adv. Radio Sci. 2019, 16, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Han, J.H.; Ju, S.H.; Kang, N.W.; Lee, W.S.; Choi, J.S. Wideband Coupling Modeling Analysis by Arbitrarily Incoming Source Fields Based on the Electromagnetic Topology Technique. IEEE Trans. Microw. Theory Tech. 2018, 67, 28–37. [Google Scholar] [CrossRef]
- Junqua, I.; Guibert, L.; Parmantier, J.P. Assessment of high frequency coupling in a generic object by the power balance method. In Proceedings of the 18th International Zurich Symposium on Electromagnetic Compatibility, Munich, Germany, 24–28 September 2007; pp. 397–400. [Google Scholar]
- Wolfram Research, BesselK. Available online: https://functions.wolfram.com/Bessel-TypeFunctions/BesselK/introductions/Bessels/ShowAll.html (accessed on 31 January 2022).
- Wolfram MathWorld, Hankel Function of the Second Kind. Available online: https://mathworld.wolfram.com/HankelFunctionoftheSecondKind.html (accessed on 31 January 2022).
- Yang, K.; David, G.; Yook, J.G.; Papapolymerou, I.; Katehi, L.P.; Whitaker, J.F. Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna. IEEE Trans. Microw. Theory Tech. 2000, 48, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.J.; Kwon, J.Y.; Kang, N.W.; Whitaker, J.F. Calibrated 100-dB-dynamic-range electro-optic probe for high-power microwave applications. Opt. Express 2011, 19, 14437–14450. [Google Scholar] [CrossRef] [PubMed]
- Garzarella, A.; Qadri, S.B.; Wu, D.H. Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications. Appl. Phys. Lett. 2009, 94, 221113. [Google Scholar] [CrossRef]
- Lee, D.J.; Kang, N.W.; Choi, J.H.; Kim, J.; Whitaker, J.F. Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing. Sensors 2011, 11, 806–824. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.J.; Cho, C.H.; Shin, J.W.; Kang, N.W. Photonic-assisted diagnosis of electromagnetic coupling into a generic object. Meas. Sci. Technol. 2013, 24, 125207. [Google Scholar] [CrossRef]
- Ott, H.W. Noise Reduction Techniques in Electronic Systems; Wiley: New York, NY, USA, 1988. [Google Scholar]
Aperture Index | Aperture Size | Center of Each Aperture Position (ρ, φ, z) |
---|---|---|
Aperture 1 | 46.8 mm × 15 mm | 49.25 mm, 0, 607 mm |
Aperture 2 | 17.72 mm × 17.72 mm | 49.25 mm, 0, 207 mm |
Aperture 3 | 88.75 mm × 5 mm | 49.25 mm, π/2, 408.6 mm |
Aperture 4 | 88.75 mm × 5 mm | 49.25 mm, −π/2, 408.6 mm |
Analysis Method | Computing Time (s) |
---|---|
Proposed method | 62 |
FEKO (MoM based) | 6240 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, W.; Kang, N.-W.; Lee, W.; Cheon, C.; Chung, Y.-S. Analysis of Intentional Electromagnetic Interference on GENEC Model Using Cylindrical Mode Matching. Sensors 2023, 23, 3278. https://doi.org/10.3390/s23063278
Kang W, Kang N-W, Lee W, Cheon C, Chung Y-S. Analysis of Intentional Electromagnetic Interference on GENEC Model Using Cylindrical Mode Matching. Sensors. 2023; 23(6):3278. https://doi.org/10.3390/s23063278
Chicago/Turabian StyleKang, Wonjune, No-Weon Kang, Woosang Lee, Changyul Cheon, and Young-Seek Chung. 2023. "Analysis of Intentional Electromagnetic Interference on GENEC Model Using Cylindrical Mode Matching" Sensors 23, no. 6: 3278. https://doi.org/10.3390/s23063278