Coseismic Deformation Field and Fault Slip Distribution Inversion of the 2020 Jiashi Ms 6.4 Earthquake: Considering the Atmospheric Effect with Sentinel-1 Data Interferometry
<p>Tectonic background of the 2020 <span class="html-italic">M<sub>s</sub></span> 6.4 Jiashi earthquake. (<b>a</b>) Regional map showing the location of the earthquake. (<b>b</b>) Tectonic setting. The blue rectangles mark the InSAR data coverage; the black beach balls denote the <span class="html-italic">M</span><sub>s</sub> > 3 earthquakes that occurred in the area from 1965 to 2020; the red star denotes the epicentre; the red rectangle outlines the area shown in (<b>b</b>). The red, black, and blue beach balls show the focal moment solutions reported by the USGS, Global Centroid Moment Tensor (GCMT), and CENC, respectively, which are shown in (<b>b</b>). The black dots represent the aftershocks (<span class="html-italic">M</span><sub>s</sub> > 3) that occurred between 19 and 26 January 2020, reported by the GCMT. The black lines depict the major strike fault, Keping fault, and Ozgertaou fault.</p> "> Figure 2
<p>The line-of-sight (LOS) coseismic differential interferograms of the 2020 Jiashi <span class="html-italic">Ms</span> 6.4 earthquake based on the ascending and descending images from Sentinel-1A. (<b>a</b>,<b>b</b>) show the descending and ascending differential interferograms, respectively. Each cycle of colour (from blue to red) represents a half radar wavelength (2.8 cm) along the LOS direction.</p> "> Figure 3
<p>Deformation fields of the Jiashi <span class="html-italic">Ms</span> 6.4 earthquake acquired using Sentinel-1A data for the descending and ascending tracks. (<b>a</b>,<b>b</b>) show the descending and ascending LOS coseismic deformation maps without tropospheric delay correction, respectively. (<b>c</b><span class="html-italic">,</span><b>d</b>) show the descending and ascending LOS coseismic deformation maps after atmospheric correction, respectively. The black lines denote the main faults. The positive values indicate that the earth’s surface moves toward the LOS direction.</p> "> Figure 3 Cont.
<p>Deformation fields of the Jiashi <span class="html-italic">Ms</span> 6.4 earthquake acquired using Sentinel-1A data for the descending and ascending tracks. (<b>a</b>,<b>b</b>) show the descending and ascending LOS coseismic deformation maps without tropospheric delay correction, respectively. (<b>c</b><span class="html-italic">,</span><b>d</b>) show the descending and ascending LOS coseismic deformation maps after atmospheric correction, respectively. The black lines denote the main faults. The positive values indicate that the earth’s surface moves toward the LOS direction.</p> "> Figure 4
<p>Slip distribution of the Jiashi earthquake inverted from InSAR data. The yellow star represents the Retrieved Epicenter Position. The slip direction of the coseismic deformation field is indicated by black arrows. The size of the arrow represents the amount of sliding.</p> "> Figure 5
<p>Coseismic displacement (negative values indicate range displacement away from the satellite) and model for the slip distribution inversion of the 2020 Jiashi earthquake. (<b>a</b>–<b>c</b>) are the measurement, model, and residual derived from the descending track. (<b>d</b>–<b>f</b>) are the measurement, model, and residual derived from the ascending track.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tectonic Background
2.2. InSAR Data
2.3. Study Methods
2.3.1. Improved Inverse Distance Weighted Interpolation Tropospheric Decomposition Method
2.3.2. Inversion of Fault Geometry
2.3.3. Inversion of Fault Slip Distribution
3. Results
3.1. Coseismic Deformation Field Result
3.2. Inversion of Fault Geometry and Slip Distribution
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tu, H.; Wan, X.; Gao, G.; Luo, G.; Hu, Y.; Ma, Z. Research of the Reason for Variations of the Earthquake Fault Characters and the Stress Field in the Jiashi Region of Xingjing from 1977 to 2006. Prog. Geophys. 2008, 23, 1038–1044. [Google Scholar]
- Song, F.; Min, W.; Han, Z.; Xu, X. Cenozoic Deformation and Propagation of the Kalpingtag Fold Nappe. Seismol. Geol. 2006, 28, 224–233. [Google Scholar]
- He, Y.; Wang, T.; Fang, L.; Zhao, L. The 2020 Mw 6.0 Jiashi Earthquake: Coinvolvement of Thin-Skinned Thrusting and Basement Shortening in Shaping the Keping-Tage Fold-and-Thrust Belt in Southwestern Tian Shan. Seism. Res. Lett. 2021, 93, 680–692. [Google Scholar] [CrossRef]
- Li, C.; Zhang, G.; Shan, X.; Qu, C.; Gong, W.; Jia, R.; Zhao, D. Coseismic Deformation and Slip Distribution of the Ms 6. 4 Jiashi, Xinjiang Earthquake Revealed by Sentinel-1A SAR Imagery. Prog. Geophys. 2021, 36, 481–488. [Google Scholar]
- Yu, P.; Qiao, X.; Xiong, W.; Chen, W.; Nie, Z.; Wang, D.; Jia, Z.; Li, J. Source model for the Mw 6.0 earthquake in Jiashi, China on 19 January 2020 from Sentinel-1A InSAR data. Earth Planets Space 2020, 72, 1–11. [Google Scholar] [CrossRef]
- Wen, S.; Li, C.; Li, J. Preliminary Discussion on Characteristics of Coseismic Deformation Field and InSAR Seismogenic Structure for Xinjing Jiashi Ms 6.4 Earthquake on January 19 th, 2019. Inland Earthq. 2020, 34, 1–9. [Google Scholar]
- Yao, Y.; Wen, S.; Li, T.; Wang, C. The 2020 Mw 6.0 Jiashi Earthquake: A Fold Earthquake Event in the Southern Tian Shan, Northwest China. Seism. Res. Lett. 2020, 92, 859–869. [Google Scholar] [CrossRef]
- Kim, J.; Lin, S.; Yun, H.; Tsai, Y.; Seo, H.; Hong, S.; Choi, Y. Investigation of Potential Volcanic Risk from Mt.Baekdu by DInSAR Time Series Analysis and Atmospheric Correction. Remote Sens. 2017, 9, 138. [Google Scholar] [CrossRef] [Green Version]
- Hanssen, R. Radar Interferometry Data Interpretation and Error Analysis; Kluwer Academic Publishers: New York, NY, USA, 2001. [Google Scholar]
- Kinoshita, Y.; Furuya, M.; Hobiger, T.; Ichikawa, R. Are numerical weather model outputs helpful to reduce tropospheric delay signals in InSAR data? J. Geod. 2013, 87, 267–277. [Google Scholar] [CrossRef] [Green Version]
- Bekaert, D.; Walters, R.; Wright, T.; Hooper, A.; Parker, D. Statistical Comparison of InSAR Troposphereic Correction Techniques. Remote Sens. Environ. 2015, 170, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Gong, W.; Meyer, F.; Webley, P.; Morton, D.; Liu, S. Performance Analysis of Atmospheric Correction in InSAR Data Based on the Weather Reasearch and Forecasting Model (WRF). In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 2900–2903. [Google Scholar]
- Janssen, V.; Ge, L.; Rizos, C. Tropospheric corrections to SAR interferometry from GPS observations. GPS Solut. 2004, 8, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Park, J.; Cho, J.; Park, P. Seasonal variability of GPS-derived zenith tropospheric delay (1994–2006) and climate implications. J. Geophys. Res. Atmos. 2007, 112, D09110. [Google Scholar] [CrossRef]
- Williams, S.; Bock, Y.; Fang, P. Integrated Satellite Interferometry: Tropospheric Noise, GPS Estimates and Implication for Interferometric Synthetic Aperture Radar Products. J. Geophys. Res. 1998, 103, 27051–27067. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- He, Z.; Chen, T.; Wang, M.; Li, Y. Multi-Segment Rupture Model of the 2016 Kumamoto Earthquake Revealed by InSAR and GPS Data. Remote Sens. 2020, 12, 3721. [Google Scholar] [CrossRef]
- Kumar Maurya, V.; Dwivedi, R.; Ranjan Martha, T. Site scale landslide deformation and strain analysis using MT-InSAR and GNSS approach—A case study. Adv. Space Res. 2022, 70, 3932–3947. [Google Scholar] [CrossRef]
- Lazos, I.; Papanikolaou, I.; Sboras, S.; Foumelis, M.; Pikridas, C. Geodetic Upper Crust Deformation Based on Primary GNSS and INSAR Data in the Strymon Basin, Northern Greece—Correlation with Active Faults. Appl. Sci. 2022, 12, 9391. [Google Scholar] [CrossRef]
- Yalvac, S. Validating InSAR-SBAS results by means of different GNSS analysis techniques in medium- and high-grade deformation areas. Environ. Monit. Assess. 2020, 192, 120. [Google Scholar] [CrossRef]
- Li, J.; Gao, Y.; Wang, Q. Anisotropic zoning in the upper crust of the Tianshan Tectonic Belt. Sci. China Earth Sci. 2021, 64, 651–666. [Google Scholar] [CrossRef]
- Yang, X.; Ran, Y.; Song, F.; Xu, X.; Cheng, J.; Min, W.; Han, Z.; Chen, L. The Analysis for Crust Shortening of Kalpin Thrust Tectonic Zone, South-western Tianshan, Xinjiang, China. Seismol. Geol. 2006, 28, 194–204. [Google Scholar]
- Li, S.; Zhang, X.; Mooney, W.; Lai, X.; Michael, A.; Duan, Y. A Preliminary Study on Fine Structures of Jiashi Earthquake Region and Earthquake Generating Fault. Chin. J. Phys. 2002, 45, 76–82. [Google Scholar]
- Huang, B.; Piper, J.; Zhu, R. Paleomagnetic constraints on neotectonic deformation in the Kashi depression of the western Tarim Basin, NW China. Int. J. Earth Sci. 2009, 98, 1469–1488. [Google Scholar] [CrossRef]
- Wu, Y.; Liang, F.; Yan, J.; Pei, J.; Zhang, Y. Analysis of Regional and Residual Gravity Disturbance of Major Fault Belts in the Tarim Basin, Western China. Remote Sens. 2022, 14, 3948. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, Z.; Han, J.; Xu, H.; Nuernisha. Analysis on the master event method and precise location of 1997 Jiashi strong earthquake swarm in western China. Acta Seismol. Sin. 1999, 12, 285–291. [Google Scholar] [CrossRef]
- Milczarek, W.; Kopeć, A.; Głąbicki, D. Estimation of Tropospheric and Ionospheric Delay in DInSAR Calculations: Case Study of Areas Showing (Natural and Induced) Seismic Activity. Remote Sens. 2019, 11, 621. [Google Scholar] [CrossRef] [Green Version]
- Mosegaard, K.; Sambridge, M. Monte Carlo analysis of inverse problems. Inverse Probl. 2002, 18, R29–R54. [Google Scholar] [CrossRef] [Green Version]
- Koren, Z.; Mosegaard, K.; Landa, E.; Thore, P.; Tarantola, A. Monte Carlo Eatimation and Resolution Analysis of Seismic Background Velocities. J. Geophys. Res. 1991, 96, 27051–27067. [Google Scholar] [CrossRef]
- Anderssen, R.; Seneta, E. A Simple Statistical Estimation Procedure for Monte Carlo Inversion in Geophysics. Pure Appl. Geophys. 1971, 91, 5–13. [Google Scholar] [CrossRef]
- Green, P. Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination. Biometrika. 1995, 82, 711–732. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, G.; Shan, X.; Gong, W.; Zhang, Y.; Li, Y. Co-Seismic Deformation and Fault Slip Model of the 2017 Mw 7.3 Darbandikhan, Iran–Iraq Earthquake Inferred from D-InSAR Measurements. Remote Sens. 2019, 11, 2521. [Google Scholar] [CrossRef] [Green Version]
Lat (°) | Lon (°) | Depth (km) | Mag | Nodal Plan I | Nodal Plan II | Agency | ||||
---|---|---|---|---|---|---|---|---|---|---|
Strike | Dip | Rake | Strike | Dip | Rake | |||||
39.8 | 77.2 | 12 | 6.0 | 196 | 37 | 30 | 81 | 72 | 123 | GCMT |
39.8 | 77.1 | 20 | 6.0 | 221 | 20 | 72 | 60 | 71 | 96 | USGS |
39.8 | 77.2 | 16 | 6.4 | 182 | 35 | 32 | 65 | 72 | 121 | CENC |
39.8 | 77.1 | 16 | 6.1 | 56 | 75 | 94 | 222 | 16 | 77 | GFZ |
Flight Direction | Track | Master | Secondary | Time Interval | Perpendicular Baseline |
---|---|---|---|---|---|
Descending | T034 | 10 January 2020 | 22 January 2020 | 12 | 57 |
Ascending | T129 | 16 January 2020 | 28 January 2020 | 12 | 11 |
Source | Lon | Lat | Length | Depth | Width | Strike | Dip | Rake 1 | Slip 2 | Mw |
---|---|---|---|---|---|---|---|---|---|---|
(°E) | (°N) | (Km) | (Km) | (Km) | (°) | (°) | (°) | (m) | ||
InSAR | 77.30 | 39.90 | 50 | 10 | 31 | 274.87 | 20 | 90.59 | 0.34 | 6.06 |
USGS | 77.11 | 39.835 | - | 20 | - | 221 | 20 | 72 | - | 6.03 |
GCMT | 77.18 | 39.78 | - | 12 | - | 196 | 37 | 30 | - | 6.0 |
CENC | 77.21 | 39.83 | - | 16 | - | 182 | 35 | 32 | - | 6.0 |
GFZ | 77.10 | 39.80 | - | 16 | - | 222 | 16 | 77 | - | 6.1 |
Li et al. [17] | - | - | 58 | 10 | 30 | 270 | 15 | 85 | 0.34 | 6.0 |
Yu et al. [5] | 77.30 | 39.89 | 50 | 4.97 | 20 | 275 | 17 | 84.96 | 0.29 | 6.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Li, J.; Liu, X.; Li, Z.; Adil, N. Coseismic Deformation Field and Fault Slip Distribution Inversion of the 2020 Jiashi Ms 6.4 Earthquake: Considering the Atmospheric Effect with Sentinel-1 Data Interferometry. Sensors 2023, 23, 3046. https://doi.org/10.3390/s23063046
Zhang X, Li J, Liu X, Li Z, Adil N. Coseismic Deformation Field and Fault Slip Distribution Inversion of the 2020 Jiashi Ms 6.4 Earthquake: Considering the Atmospheric Effect with Sentinel-1 Data Interferometry. Sensors. 2023; 23(6):3046. https://doi.org/10.3390/s23063046
Chicago/Turabian StyleZhang, Xuedong, Jiaojie Li, Xianglei Liu, Ziqi Li, and Nilufar Adil. 2023. "Coseismic Deformation Field and Fault Slip Distribution Inversion of the 2020 Jiashi Ms 6.4 Earthquake: Considering the Atmospheric Effect with Sentinel-1 Data Interferometry" Sensors 23, no. 6: 3046. https://doi.org/10.3390/s23063046