NOMA-Based VLC Systems: A Comprehensive Review
<p>An overview of downlink NOMA-VLC.</p> "> Figure 2
<p>(<b>a</b>) An overview of a basic VLC system. (<b>b</b>) Conceptual diagram of a NOMA-VLC system.</p> "> Figure 3
<p>From OMA to NOMA through power domain multiplexing.</p> "> Figure 4
<p>An overview of 2 × 2 MIMO-NOMA-based VLC system with <span class="html-italic">k</span>-users.</p> "> Figure 5
<p>An overview of NOMA-UVLC system.</p> "> Figure 6
<p>An overview of Hybrid RF/VLC wireless network.</p> "> Figure 7
<p>System model with two users: trusted and untrusted.</p> "> Figure 8
<p>Block diagram of two-user NOMA-based VLC system with QAM and O-OFDM.</p> "> Figure 9
<p>BER performance analysis for NOMA-DCO-OFDM (<b>a</b>) User1 PA 0.9 and User2 PA 0.1 (<b>b</b>) User1 PA 0.6 and User2 PA 0.4.</p> "> Figure 10
<p>An overview of NOMA-VLC system using a CNN-based demodulator.</p> "> Figure 11
<p>NOMA-VLC system with two users and an eavesdropper.</p> "> Figure 12
<p>Critical challenges in NOMA-VLC.</p> ">
Abstract
:1. Introduction
1.1. Background
1.1.1. NOMA for VLC
- In NOMA-VLC systems, a cooperative NOMA scheme can be incorporated; however, the strong user may not intend to utilize some power to forward the signal to the weak user. Thus, it is possible to investigate the approaches where the strong user can harvest energy from the optical sources and then it can consume it to forward signal to the weak user.
- When a VLC system is based on several access points (APs) for the transmission of power and information to multiple users, if the number of APs is lower than users, then a critical issue is to adopt OMA or NOMA for energy harvesting and user scheduling. As NOMA offers higher data rates compared to OMA, the VLC-NOMA system is thus adopted to attain the required data rates for all users with a small amount of transmit power.
- Cooperative NOMA is basically introduced in RF networks for the exploitation of redundant data in NOMA systems, and for the compensation of weak user facing co-channel interference. The cooperative NOMA can be integrated in VLC systems or through relaying systems. While assuming a VLC system of two users, all users can collect data from RF or VLC networks simultaneously. In such cases, the strong user can decode the weak user’s signal and forward it to the intended user through Bluetooth or Wi-Fi. The weak user can then mix the VLC and RF signals through combining methods.
- In the literature, several studies have reported modulation and coding schemes for RF-NOMA systems. Since the modulation and coding schemes for NOMA-VLC are different from RF-NOMA, finding the novel modulation and coding schemes for NOMA-VLC systems is worthy for successful deployment of these systems.
- As VLC systems are prone to SNR fluctuation, some users receive poor QoS due to handover overhead, inter-cell interference, and LoS blockage, while other users get a high QoS. A cooperative NOMA-based scheme can be adopted where good-serviced users can support weak users through RF links. Thus, a hybrid system can be easily established to provide good service for all users.
1.1.2. NOMA for RF
1.2. Scope and Contributions
1.3. Organization of the Paper
2. Related Work
3. Integration of NOMA-Based VLC with Emerging Technologies
3.1. MISO/MIMO Techniques in NOMA-Based VLC Systems
3.1.1. VLC-NOMA for Underwater Applications
3.1.2. PD-NOMA for Underwater Applications
3.2. NOMA-Based Hybrid RF/VLC Systems
3.3. NOMA-Based VLC System with IRS
3.4. NOMA-VLC with UAV
3.5. NOMA-VLC with OFDM
3.6. Machine Learning Techniques for NOMA-VLC
3.7. Physical Layer Security (PLS) in NOMA-VLC
4. Potential Challenges and Open Research Issues
4.1. MIMO
4.2. Security
4.3. Hybrid VLC/RF Systems
4.4. Impact of Transmission Distortion
4.5. Impact of Interference
4.6. Practical Channel
4.7. Decoding Complexity
4.8. Signaling and Processing Overhead
4.9. Limited Number of User Pairs
4.10. Power Allocation Complexity
5. Future Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tullberg, H.; Popovski, P.; Li, Z.; Uusitalo, M.A.; Hoglund, A.; Bulakci, O.; Fallgren, M.; Monserrat, J.F. The METIS 5G System Concept: Meeting the 5G Requirements. IEEE Commun. Mag. 2016, 54, 132–139. [Google Scholar] [CrossRef]
- Feng, L.; Hu, R.Q.; Wang, J.; Xu, P.; Qian, Y. Applying VLC in 5G Networks: Architectures and Key Technologies. IEEE Netw. 2016, 30, 77–83. [Google Scholar] [CrossRef]
- Bawazir, S.S.; Sofotasios, P.C.; Muhaidat, S.; Al-Hammadi, Y.; Karagiannidis, G.K. Multiple Access for Visible Light Communications: Research Challenges and Future Trends. IEEE Access 2018, 6, 26167–26174. [Google Scholar] [CrossRef]
- Dai, L.; Wang, B.; Ding, Z.; Wang, Z.; Chen, S.; Hanzo, L. A Survey of Non-Orthogonal Multiple Access for 5G. IEEE Commun. Surv. Tutor. 2018, 20, 2294–2323. [Google Scholar] [CrossRef] [Green Version]
- Marshoud, H.; Kapinas, V.M.; Karagiannidis, G.K.; Muhaidat, S. Non-Orthogonal Multiple Access for Visible Light Communications. IEEE Photonics Technol. Lett. 2015, 28, 51–54. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; He, J.; Wu, K.; Ma, J. Enhanced Performance of Asynchronous Multi-Cell VLC System Using OQAM/OFDM-NOMA. J. Lightware Technol. 2019, 37, 5212–5220. [Google Scholar] [CrossRef]
- Dissanayake, S.D.; Armstrong, J. Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD Systems. J. Lightware Technol. 2013, 31, 1063–1072. [Google Scholar] [CrossRef]
- Islam, S.M.R.; Avazov, N.; Dobre, O.A.; Kwak, K.-S. Power-Domain Non-Orthogonal Multiple Access (NOMA) in 5G Systems: Potentials and Challenges. IEEE Commun. Surv. Tutor. 2016, 19, 721–742. [Google Scholar] [CrossRef] [Green Version]
- Almohimmah, E.M.; Alresheedi, M.T. Error Analysis of NOMA-Based VLC Systems with Higher Order Modulation Schemes. IEEE Access 2019, 8, 2792–2803. [Google Scholar] [CrossRef]
- Arfaoui, M.A.; Ghrayeb, A.; Assi, C.; Qaraqe, M. CoMP-assisted NOMA and cooperative NOMA in indoor VLC cellular systems. IEEE Trans. Commun. 2022, 70, 6020–6034. [Google Scholar] [CrossRef]
- Zhang, X.; Haenggi, M. The Performance of Successive Interference Cancellation in Random Wireless Networks. IEEE Trans. Inf. Theory 2014, 60, 6368–6388. [Google Scholar] [CrossRef] [Green Version]
- Arfaoui, M.A.; Soltani, M.D.; Tavakkolnia, I.; Ghrayeb, A.; Assi, C.M.; Safari, M.; Haas, H. Measurements-Based Channel Models for Indoor LiFi Systems. IEEE Trans. Wirel. Commun. 2020, 20, 827–842. [Google Scholar] [CrossRef]
- Soltani, M.D.; Arfaoui, M.A.; Tavakkolnia, I.; Ghrayeb, A.; Safari, M.; Assi, C.M.; Hasna, M.O.; Haas, H. Bidirectional Optical Spatial Modulation for Mobile Users: Toward a Practical Design for LiFi Systems. IEEE J. Sel. Areas Commun. 2019, 37, 2069–2086. [Google Scholar] [CrossRef] [Green Version]
- Raj, R.; Dixit, A. An Energy-Efficient Power Allocation Scheme for NOMA-Based IoT Sensor Networks in 6G. IEEE Sens. J. 2022, 22, 7371–7384. [Google Scholar] [CrossRef]
- Ding, Z.; Lei, X.; Karagiannidis, G.K.; Schober, R.; Yuan, J.; Bhargava, V.K. A Survey on Non-Orthogonal Multiple Access for 5G Networks: Research Challenges and Future Trends. IEEE J. Sel. Areas Commun. 2017, 35, 2181–2195. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yi, W.; Ding, Z.; Liu, X.; Dobre, O.; Al-Dhahir, N. Developing NOMA to next generation multiple access (NGMA): Future vision and research opportunities. arXiv 2021, arXiv:2103.02334. [Google Scholar]
- Chen, C.; Zhong, W.-D.; Yang, H.; Du, P. On the Performance of MIMO-NOMA-Based Visible Light Communication Systems. IEEE Photonics Technol. Lett. 2017, 30, 307–310. [Google Scholar] [CrossRef]
- Dogra, T.; Bharti, M.R. User pairing and power allocation strategies for downlink NOMA-based VLC systems: An overview. AEU-Int. J. Electron. Commun. 2022, 149, 154184. [Google Scholar] [CrossRef]
- Sadat, H.; Abaza, M.; Mansour, A.; Alfalou, A. A Survey of NOMA for VLC Systems: Research Challenges and Future Trends. Sensors 2022, 22, 1395. [Google Scholar] [CrossRef]
- Kusaladharma, S.; Zhu, W.-P.; Ajib, W.; Baduge, G.A.A. Rate and Energy Efficiency Improvements of Massive MIMO-Based Stochastic Cellular Networks With NOMA. IEEE Trans. Green Commun. Netw. 2021, 5, 1467–1481. [Google Scholar] [CrossRef]
- Zeng, M.; Yadav, A.; Dobre, O.A.; Poor, H.V. Energy-Efficient Power Allocation for MIMO-NOMA With Multiple Users in a Cluster. IEEE Access 2018, 6, 5170–5181. [Google Scholar] [CrossRef]
- Yang, Z.; Ding, Z.; Fan, P.; Al-Dhahir, N. A General Power Allocation Scheme to Guarantee Quality of Service in Downlink and Uplink NOMA Systems. IEEE Trans. Wirel. Commun. 2016, 15, 7244–7257. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, W.; Pan, C.; Pan, Y.; Chen, M. On the Optimality of Power Allocation for NOMA Downlinks with Individual QoS Constraints. IEEE Commun. Lett. 2017, 21, 1649–1652. [Google Scholar] [CrossRef]
- Obeed, M.; Dahrouj, H.; Salhab, A.M.; Zummo, S.A.; Alouini, M.-S. User Pairing, Link Selection, and Power Allocation for Cooperative NOMA Hybrid VLC/RF Systems. IEEE Trans. Wirel. Commun. 2021, 20, 1785–1800. [Google Scholar] [CrossRef]
- Raj, R.; Dixit, A. Outage Analysis and Reliability Enhancement of Hybrid VLC-RF Networks Using Cooperative Non-Orthogonal Multiple Access. IEEE Trans. Netw. Serv. Manag. 2021, 18, 4685–4696. [Google Scholar] [CrossRef]
- Medina, C.; Zambrano, M.; Navarro, K. Led based visible light communication: Technology, applications and challenges—A survey. Int. J. Adv. Eng. Technol. 2015, 8, 482. [Google Scholar]
- Lin, B.; Guo, Q.; Ghassemlooy, Z.; Tang, X.; Lin, C.; Zhou, Z. Experimental demonstration of a non-orthogonal multiple access scheme for visible light communications with SCFDM transmission. Phys. Commun. 2018, 31, 181–186. [Google Scholar] [CrossRef]
- Marshoud, H.; Muhaidat, S.; Sofotasios, P.C.; Hussain, S.; Imran, M.A.; Sharif, B.S. Optical Non-Orthogonal Multiple Access for Visible Light Communication. IEEE Wirel. Commun. 2018, 25, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Obeed, M.; Salhab, A.M.; Alouini, M.-S.; Zummo, S.A. On Optimizing VLC Networks for Downlink Multi-User Transmission: A Survey. IEEE Commun. Surv. Tutor. 2019, 21, 2947–2976. [Google Scholar] [CrossRef] [Green Version]
- Shaaban, K.; Shamim, M.H.M.; Abdur-Rouf, K. Visible light communication for intelligent transportation systems: A review of the latest technologies. J. Traffic Transp. Eng. 2021, 8, 483–492. [Google Scholar] [CrossRef]
- Mapunda, G.A.; Ramogomana, R.; Marata, L.; Basutli, B.; Khan, A.S.; Chuma, J.M. Indoor Visible Light Communication: A Tutorial and Survey. Wirel. Commun. Mob. Comput. 2020, 2020, 8881305. [Google Scholar] [CrossRef]
- Mathur, H.; Deepa, T. A Survey on Advanced Multiple Access Techniques for 5G and Beyond Wireless Communications. Wirel. Pers. Commun. 2021, 118, 1775–1792. [Google Scholar] [CrossRef]
- Marshoud, H.; Sofotasios, P.C.; Muhaidat, S.; Karagiannidis, G.K. Multi-user techniques in visible light communications: A survey. In Proceedings of the 2016 International Conference on Advanced Communication Systems and Information Security (ACOSIS), Marrakesh, Morocco, 17–19 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [Google Scholar]
- Yin, L.; Popoola, W.O.; Wu, X.; Haas, H. Performance Evaluation of Non-Orthogonal Multiple Access in Visible Light Communication. IEEE Trans. Commun. 2016, 64, 5162–5175. [Google Scholar] [CrossRef] [Green Version]
- Al-Ahmadi, S.; Maraqa, O.; Uysal, M.; Sait, S.M. Multi-User Visible Light Communications: State-of-the-Art and Future Directions. IEEE Access 2018, 6, 70555–70571. [Google Scholar] [CrossRef]
- Ding, Z.; Peng, M.; Poor, H.V. Cooperative Non-Orthogonal Multiple Access in 5G Systems. IEEE Commun. Lett. 2015, 19, 1462–1465. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Yuan, J.; Ng, D.W.K.; Elkashlan, M.; Ding, Z. A survey of downlink non-orthogonal multiple access for 5G wireless communication networks. arXiv 2016, arXiv:1609.01856. [Google Scholar]
- Akbar, A.; Jangsher, S.; Bhatti, F.A. NOMA and 5G emerging technologies: A survey on issues and solution techniques. Comput. Netw. 2021, 190, 107950. [Google Scholar] [CrossRef]
- Maraqa, O.; Rajasekaran, A.S.; Al-Ahmadi, S.; Yanikomeroglu, H.; Sait, S.M. A Survey of Rate-Optimal Power Domain NOMA With Enabling Technologies of Future Wireless Networks. IEEE Commun. Surv. Tutor. 2020, 22, 2192–2235. [Google Scholar] [CrossRef]
- Anwar, A.; Seet, B.-C.; Hasan, M.A.; Li, X.J. A Survey on Application of Non-Orthogonal Multiple Access to Different Wireless Networks. Electronics 2019, 8, 1355. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yang, L.-L. Sparse or Dense: A Comparative Study of Code-Domain NOMA Systems. IEEE Trans. Wirel. Commun. 2021, 20, 4768–4780. [Google Scholar] [CrossRef]
- Budhiraja, I.; Kumar, N.; Tyagi, S.; Tanwar, S.; Han, Z.; Piran, J.; Suh, D.Y. A Systematic Review on NOMA Variants for 5G and Beyond. IEEE Access 2021, 9, 85573–85644. [Google Scholar] [CrossRef]
- Reddy, B.S.K. Experimental Validation of Non-Orthogonal Multiple Access (NOMA) Technique using Software Defined Radio. Wirel. Pers. Commun. 2020, 116, 3599–3612. [Google Scholar] [CrossRef]
- Moltafet, M.; Yamchi, N.M.; Javan, M.R.; Azmi, P. Comparison Study Between PD-NOMA and SCMA. IEEE Trans. Veh. Technol. 2017, 67, 1830–1834. [Google Scholar] [CrossRef] [Green Version]
- Makki, B.; Chitti, K.; Behravan, A.; Alouini, M.-S. A Survey of NOMA: Current Status and Open Research Challenges. IEEE Open J. Commun. Soc. 2020, 1, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, S.; Mu, X.; Ding, Z.; Schober, R.; Al-Dhahir, N.; Hossain, E.; Shen, X. Evolution of NOMA Toward Next Generation Multiple Access (NGMA) for 6G. IEEE J. Sel. Areas Commun. 2022, 40, 1037–1071. [Google Scholar] [CrossRef]
- Li, Q.; Shang, T.; Tang, T.; Dong, Z. Optimal Power Allocation Scheme Based on Multi-Factor Control in Indoor NOMA-VLC Systems. IEEE Access 2019, 7, 82878–82887. [Google Scholar] [CrossRef]
- Chen, C.; Zhong, W.-D.; Yang, H.; Du, P.; Yang, Y. Flexible-Rate SIC-Free NOMA for Downlink VLC Based on Constellation Partitioning Coding. IEEE Wirel. Commun. Lett. 2018, 8, 568–571. [Google Scholar] [CrossRef]
- Lin, B.; Ye, W.; Tang, X.; Ghassemlooy, Z. Experimental demonstration of bidirectional NOMA-OFDMA visible light communications. Opt. Express 2017, 25, 4348–4355. [Google Scholar] [CrossRef]
- Guan, X.; Hong, Y.; Yang, Q.; Chan, C.C.-K. Phase Pre-Distortion for Non-Orthogonal Multiple Access in Visible Light Communications. In Proceedings of the Optical Fiber Communication Conference, Anaheim, CA, USA, 20–22 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, W.; Li, Y. Fair Non-Orthogonal Multiple Access for Visible Light Communication Downlinks. IEEE Wirel. Commun. Lett. 2016, 6, 66–69. [Google Scholar] [CrossRef]
- Haas, H.; Yin, L.; Wang, Y.; Chen, C. What is lifi? J. Lightware Technol. 2015, 34, 1533–1544. [Google Scholar] [CrossRef]
- Fu, Y.; Hong, Y.; Chen, L.-K.; Sung, C.W. Enhanced Power Allocation for Sum Rate Maximization in OFDM-NOMA VLC Systems. IEEE Photonics Technol. Lett. 2018, 30, 1218–1221. [Google Scholar] [CrossRef]
- Ren, H.; Wang, Z.; Han, S.; Chen, J.; Yu, C.; Xu, C.; Yu, J. Performance Improvement of M-QAM OFDM-NOMA Visible Light Communication Systems. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Li, H.; Huang, Z.; Xiao, Y.; Zhan, S.; Ji, Y. Solution for error propagation in a NOMA-based VLC network: Symmetric superposition coding. Opt. Express 2017, 25, 29856–29863. [Google Scholar] [CrossRef]
- Marshoud, H.; Sofotasios, P.C.; Muhaidat, S.; Karagiannidis, G.K.; Sharif, B.S. On the Performance of Visible Light Communication Systems with Non-Orthogonal Multiple Access. IEEE Trans. Wirel. Commun. 2017, 16, 6350–6364. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Wang, J.; Wang, J.; Yang, J.; Xiong, J.; Gui, G. Symbol error rate performance analysis of non- orthogonal multiple access for visible light communications. China Commun. 2017, 14, 153–161. [Google Scholar] [CrossRef]
- Naser, S.A.; Sofotasios, P.C.; Bariah, L.; Jaafar, W.; Muhaidat, S.; Al-Qutayri, M.; Dobre, O.A. Rate-Splitting Multiple Access: Unifying NOMA and SDMA in MISO VLC Channels. IEEE Open J. Veh. Technol. 2020, 1, 393–413. [Google Scholar] [CrossRef]
- Aljohani, M.K.; Musa, M.O.; Alresheedi, M.T.; Elmirghani, J.M. WDM NOMA VLC Systems. In Proceedings of the 2019 21st International Conference on Transparent Optical Networks (ICTON), Angers, France, 9–13 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Bariah, L.; Muhaidat, S.; Al-Dweik, A. Error Probability Analysis of Non-Orthogonal Multiple Access Over Nakagami-m Fading Channels. IEEE Trans. Commun. 2018, 67, 1586–1599. [Google Scholar] [CrossRef]
- Assaf, T.; Al-Dweik, A.; El Moursi, M.; Zeineldin, H. Exact BER Performance Analysis for Downlink NOMA Systems Over Nakagami-m Fading Channels. IEEE Access 2019, 7, 134539–134555. [Google Scholar] [CrossRef]
- Zhou, X.; Li, S.; Zhang, H.; Wen, Y.; Han, Y.; Yuan, D. Cooperative NOMA Based VLC/RF System with Simultaneous Wireless Information and Power Transfer. In Proceedings of the 2018 IEEE/CIC International Conference on Communications in China (ICCC), Beijing, China, 16–18 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 100–105. [Google Scholar] [CrossRef]
- Papanikolaou, V.K.; Diamantoulakis, P.D.; Karagiannidis, G.K. User Grouping for Hybrid VLC/RF Networks With NOMA: A Coalitional Game Approach. IEEE Access 2019, 7, 103299–103309. [Google Scholar] [CrossRef]
- Abumarshoud, H.; Alshaer, H.; Haas, H. Dynamic Multiple Access Configuration in Intelligent Lifi Attocellular Access Points. IEEE Access 2019, 7, 62126–62141. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, Q.; Gong, C.; Xu, Z. User Grouping and Power Allocation for NOMA Visible Light Communication Multi-Cell Networks. IEEE Commun. Lett. 2016, 21, 777–780. [Google Scholar] [CrossRef]
- Guan, X.; Yang, Q.; Chan, C.-K. Joint Detection of Visible Light Communication Signals Under Non-Orthogonal Multiple Access. IEEE Photonics Technol. Lett. 2017, 29, 377–380. [Google Scholar] [CrossRef]
- Dai, J.; Niu, K.; Lin, J. Code-Domain Non-Orthogonal Multiple Access for Visible Light Communications. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Zeng, L.; O’Brien, D.C.; Le Minh, H.; Faulkner, G.E.; Lee, K.; Jung, D.; Oh, Y.; Won, E.T. High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting. IEEE J. Sel. Areas Commun. 2009, 27, 1654–1662. [Google Scholar] [CrossRef]
- Chen, C.; Zhong, W.-D.; Wu, D. On the Coverage of Multiple-Input Multiple-Output Visible Light Communications [Invited]. J. Opt. Commun. Netw. 2017, 9, D31–D41. [Google Scholar] [CrossRef]
- Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 2014, 52, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Ghassemlooy, Z.; Tang, X.; Li, Y.; Zhang, M. Experimental demonstration of optical MIMO NOMA-VLC with single carrier transmission. Opt. Commun. 2017, 402, 52–55. [Google Scholar] [CrossRef]
- Ding, Z.; Schober, R.; Poor, H.V. A General MIMO Framework for NOMA Downlink and Uplink Transmission Based on Signal Alignment. IEEE Trans. Wirel. Commun. 2016, 15, 4438–4454. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Adachi, F.; Poor, H.V. The Application of MIMO to Non-Orthogonal Multiple Access. IEEE Trans. Wirel. Commun. 2015, 15, 537–552. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Yu, H.; Zhu, Y.; Zhang, E. Power allocation algorithm of optical MIMO NOMA visible light communications. In Proceedings of the 2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 12–14 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Shi, J.; Hong, Y.; He, J.; Deng, R.; Chen, L.-K. Experimental Demonstration of OQAM-OFDM based MIMO-NOMA over Visible Light Communications. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 11–15 March 2018; Optical Society of America: Washington, DC, USA, 2018; p. M2K-3. [Google Scholar] [CrossRef]
- Chen, C.; Yang, Y.; Deng, X.; Du, P.; Yang, H.; Chen, Z.; Zhong, W.-D. NOMA for MIMO Visible Light Communications: A Spatial Domain Perspective. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Elamassie, M.; Miramirkhani, F.; Uysal, M. Performance Characterization of Underwater Visible Light Communication. IEEE Trans. Commun. 2018, 67, 543–552. [Google Scholar] [CrossRef]
- Han, S.; Noh, Y.; Liang, R.; Chen, R.; Cheng, Y.-J.; Gerla, M. Evaluation of underwater optical-acoustic hybrid network. China Commun. 2014, 11, 49–59. [Google Scholar] [CrossRef]
- Huang, X.; Yang, F.; Song, J. Hybrid LD and LED-based underwater optical communication: State-of-the-art, opportunities, challenges, and trends [Invited]. Chin. Opt. Lett. 2019, 17, 100002. [Google Scholar] [CrossRef]
- Zang, Y.-D.; Zhang, J.; Si-Ma, L.-H. Anscombe Root DCO-OFDM for SPAD-Based Visible Light Communication. IEEE Photonics J. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Y.; Jin, J.; Lu, H.; Wang, J. An experimental study of NOMA in underwater visible light communication system. Opt. Commun. 2020, 475, 126199. [Google Scholar] [CrossRef]
- Geldard, C.; Thompson, J.; Popoola, W.O. A Study of Non-Orthogonal Multiple Access in Underwater Visible Light Communication Systems. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Y.; Zhang, K.; Quan, J.; Li, Z.; Dong, Y. On Performance of Multiuser Underwater Wireless Optical Communication Systems. In Proceedings of the 2020 International Conference on Computing, Networking and Communications (ICNC), Big Island, HI, USA, 17–20 February 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1042–1046. [Google Scholar] [CrossRef]
- Jain, M.; Sharma, N.; Gupta, A.; Rawal, D.; Garg, P. Performance Analysis of NOMA Assisted Underwater Visible Light Communication System. IEEE Wirel. Commun. Lett. 2020, 9, 1291–1294. [Google Scholar] [CrossRef]
- Li, M.; Xiang, Y. A Photon Counting Underwater NOMA Wireless Optical Communication System. In Proceedings of the 2019 7th International Conference on Information, Communication and Networks (ICICN), Macao, China, 24–26 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 120–124. [Google Scholar] [CrossRef]
- Gussen, C.M.G.; Diniz, P.S.R.; Campos, M.L.R.; Martins, W.A.; Costa, F.M.; Gois, J.N. A Survey of Underwater Wireless Communication Technologies. J. Commun. Inf. Syst. 2016, 31, 242–255. [Google Scholar] [CrossRef]
- Elamassie, M.; Bariah, L.; Uysal, M.; Muhaidat, S.; Sofotasios, P.C. Capacity Analysis of NOMA-Enabled Underwater VLC Networks. IEEE Access 2021, 9, 153305–153315. [Google Scholar] [CrossRef]
- Ijeh, I.C.; Khalighi, M.A.; Hranilovic, S. Parameter Optimization for an Underwater Optical Wireless Vertical Link Subject to Link Misalignments. IEEE J. Ocean. Eng. 2021, 46, 1424–1437. [Google Scholar] [CrossRef]
- Jiang, R.; Sun, C.; Tang, X.; Zhang, L.; Wang, H.; Zhang, A. Joint User-Subcarrier Pairing and Power Allocation for Uplink ACO-OFDM-NOMA Underwater Visible Light Communication Systems. J. Lightware Technol. 2020, 39, 1997–2007. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.; Wei, Z.; Dong, Y.; Fu, H.; Cheng, J. High-Speed Multi-User Underwater Wireless Optical Communication System Based on NOMA Scheme. In Proceedings of the Conference on Lasers and Electro-Optics/Pacific Rim, Sydney, Australia, 3–5 August 2020; Optica Publishing Group: Washington, DC, USA, 2020; p. C10A_3. [Google Scholar] [CrossRef]
- Jamali, M.V.; Mirani, A.; Parsay, A.; Abolhassani, B.; Nabavi, P.; Chizari, A.; Khorramshahi, P.; Abdollahramezani, S.; Salehi, J.A. Statistical Studies of Fading in Underwater Wireless Optical Channels in the Presence of Air Bubble, Temperature, and Salinity Random Variations. IEEE Trans. Commun. 2018, 66, 4706–4723. [Google Scholar] [CrossRef]
- Jain, M.; Sharma, N.; Gupta, A.; Rawal, D.; Garg, P. NOMA assisted underwater visible light communication system with full-duplex cooperative relaying. Veh. Commun. 2021, 31, 100359. [Google Scholar] [CrossRef]
- Rahaim, M.B.; Vegni, A.M.; Little, T.D.C. A Hybrid Radio Frequency and Broadcast Visible Light Communication System. In Proceedings of the 2011 IEEE GLOBECOM Workshops (GC Wkshps), Houston, TX, USA, 5–9 December 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 792–796. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Zhang, H.; Yu, B. Optimal bit-and-power allocation algorithm for VLC-OFDM system. Electron. Lett. 2016, 52, 1036–1037. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.; Qian, C.; Dai, L.; Yang, Z. Efficient Vertical Handover Scheme for Heterogeneous VLC-RF Systems. J. Opt. Commun. Netw. 2015, 7, 1172–1180. [Google Scholar] [CrossRef]
- Li, X.; Zhang, R.; Hanzo, L. Cooperative Load Balancing in Hybrid Visible Light Communications and WiFi. IEEE Trans. Commun. 2015, 63, 1319–1329. [Google Scholar] [CrossRef] [Green Version]
- Bao, X.; Zhu, X.; Song, T.; Ou, Y. Protocol Design and Capacity Analysis in Hybrid Network of Visible Light Communication and OFDMA Systems. IEEE Trans. Veh. Technol. 2013, 63, 1770–1778. [Google Scholar] [CrossRef]
- Kashef, M.; Ismail, M.; Abdallah, M.; Qaraqe, K.A.; Serpedin, E. Energy Efficient Resource Allocation for Mixed RF/VLC Heterogeneous Wireless Networks. IEEE J. Sel. Areas Commun. 2016, 34, 883–893. [Google Scholar] [CrossRef]
- Al Hammadi, A.; Muhaidat, S.; Sofotasios, P.C.; al Qutayri, M. A Robust and Energy Efficient NOMA-Enabled Hybrid VLC/RF Wireless Network. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Khreishah, A.; Shao, S.; Gharaibeh, A.; Ayyash, M.; Elgala, H.; Ansari, N. A Hybrid RF-VLC System for Energy Efficient Wireless Access. IEEE Trans. Green Commun. Netw. 2018, 2, 932–944. [Google Scholar] [CrossRef] [Green Version]
- Papanikolaou, V.K.; Diamantoulakis, P.D.; Ding, Z.; Muhaidat, S.; Karagiannidis, G.K. Hybrid VLC/RF networks with non-orthogonal multiple access. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Papanikolaou, V.K.; Diamantoulakis, P.D.; Sofotasios, P.C.; Muhaidat, S.; Karagiannidis, G.K. On Optimal Resource Allocation for Hybrid VLC/RF Networks with Common Backhaul. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 352–365. [Google Scholar] [CrossRef]
- Yang, H.; Xie, X.; Kadoch, M. Intelligent Resource Management Based on Reinforcement Learning for Ultra-Reliable and Low-Latency IoV Communication Networks. IEEE Trans. Veh. Technol. 2019, 68, 4157–4169. [Google Scholar] [CrossRef]
- Yang, H.; Alphones, A.; Zhong, W.-D.; Chen, C.; Xie, X. Learning-Based Energy-Efficient Resource Management by Heterogeneous RF/VLC for Ultra-Reliable Low-Latency Industrial IoT Networks. IEEE Trans. Ind. Inform. 2019, 16, 5565–5576. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, J. Secure reconfigurable intelligent surface aided heterogeneous VLC–RF cooperative NOMA networks. Opt. Commun. 2022, 511, 127983. [Google Scholar] [CrossRef]
- Abumarshoud, H.; Mohjazi, L.; Dobre, O.A.; Di Renzo, M.; Imran, M.A.; Haas, H. LiFi through Reconfigurable Intelligent Surfaces: A New Frontier for 6G? IEEE Veh. Technol. Mag. 2021, 17, 37–46. [Google Scholar] [CrossRef]
- Aboagye, S.; Ngatched, T.M.N.; Dobre, O.A.; Ndjiongue, A.R. Intelligent Reflecting Surface-Aided Indoor Visible Light Communication Systems. IEEE Commun. Lett. 2021, 25, 3913–3917. [Google Scholar] [CrossRef]
- Sun, S.; Yang, F.; Song, J. Sum Rate Maximization for Intelligent Reflecting Surface-Aided Visible Light Communications. IEEE Commun. Lett. 2021, 25, 3619–3623. [Google Scholar] [CrossRef]
- Abumarshoud, H.; Selim, B.; Tatipamula, M.; Haas, H. Intelligent Reflecting Surfaces for Enhanced NOMA-based Visible Light Communications. arXiv 2021, arXiv:2111.04646. [Google Scholar]
- Zheng, S.; Lv, B.; Zhang, T.; Xu, Y.; Chen, G.; Wang, R.; Ching, P.C. On DoF of Active RIS-Assisted MIMO Interference Channel with Arbitrary Antenna Configurations: When Will RIS Help? arXiv 2022, arXiv:2211.11951. [Google Scholar]
- Abumarshoud, H.; Chen, C.; Tavakkolnia, I.; Haas, H.; Imran, M.A. Intelligent Reflecting Surfaces for Enhanced Physical Layer Security in NOMA VLC Systems. arXiv 2022, arXiv:2211.09456. [Google Scholar]
- Nasir, A.A.; Tuan, H.D.; Duong, T.Q.; Poor, H.V. UAV-Enabled Communication Using NOMA. IEEE Trans. Commun. 2019, 67, 5126–5138. [Google Scholar] [CrossRef] [Green Version]
- Mu, X.; Liu, Y.; Guo, L.; Lin, J. Non-Orthogonal Multiple Access for Air-to-Ground Communication. IEEE Trans. Commun. 2020, 68, 2934–2949. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.-B.; Pack, S.; Jin, H. Uplink NOMA Random Access for UAV-Assisted Communications. IEEE Trans. Veh. Technol. 2019, 68, 8289–8293. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Zhao, N.; Chen, Y.; Zhang, S.; Ding, Z.; Yu, F.R. Placement and Power Allocation for NOMA-UAV Networks. IEEE Wirel. Commun. Lett. 2019, 8, 965–968. [Google Scholar] [CrossRef] [Green Version]
- Sohail, M.F.; Leow, C.Y.; Won, S. Energy-Efficient Non-Orthogonal Multiple Access for UAV Communication System. IEEE Trans. Veh. Technol. 2019, 68, 10834–10845. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, M.; Guo, C.; Feng, C.; Saad, W. Power Efficient Visible Light Communication with Unmanned Aerial Vehicles. IEEE Commun. Lett. 2019, 23, 1272–1275. [Google Scholar] [CrossRef] [Green Version]
- Pham, Q.-V.; Nguyen, T.H.; Han, Z.; Hwang, W.-J. Coalitional Games for Computation Offloading in NOMA-Enabled Multi-Access Edge Computing. IEEE Trans. Veh. Technol. 2019, 69, 1982–1993. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, M.; Yang, Z.; Luo, T.; Saad, W. Deep Learning for Optimal Deployment of UAVs With Visible Light Communications. IEEE Trans. Wirel. Commun. 2020, 19, 7049–7063. [Google Scholar] [CrossRef]
- Luong, N.C.; Hoang, D.T.; Gong, S.; Niyato, D.; Wang, P.; Liang, Y.-C.; Kim, D.I. Applications of Deep Reinforcement Learning in Communications and Networking: A Survey. IEEE Commun. Surv. Tutor. 2019, 21, 3133–3174. [Google Scholar] [CrossRef] [Green Version]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Futur. Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Pham, Q.V.; Dao, N.N.; Huynh-The, T.; Zhao, J.; Hwang, W.J. Clustering and Power Allocation for UAV-assisted NOMA-VLC Systems: A Swarm Intelligence Approach. arXiv 2020, arXiv:2007.15430. [Google Scholar]
- Pham, Q.-V.; Huynh-The, T.; Alazab, M.; Zhao, J.; Hwang, W.-J. Sum-Rate Maximization for UAV-Assisted Visible Light Communications Using NOMA: Swarm Intelligence Meets Machine Learning. IEEE Internet Things J. 2020, 7, 10375–10387. [Google Scholar] [CrossRef]
- Deng, H.; Li, J.; Sayegh, A.; Birolini, S.; Andreani, S. Twinkle: A flying lighting companion for urban safety. In Proceedings of the Twelfth International Conference on Tangible, Embedded, and Embodied Interaction, Stockholm, Sweden, 18–21 March 2018; pp. 567–573. [Google Scholar]
- Adnan, A.; Liu, Y.; Chow, C.-W.; Yeh, C.-H. Demonstration of Non-Hermitian Symmetry (NHS) IFFT/FFT Size Efficient OFDM Non-Orthogonal Multiple Access (NOMA) for Visible Light Communication. IEEE Photonics J. 2020, 12, 1–5. [Google Scholar] [CrossRef]
- Shi, J.; Hong, Y.; Deng, R.; He, J.; Chen, L.-K.; Chang, G.-K. Demonstration of Real-Time Software Reconfigurable Dynamic Power-and-Subcarrier Allocation Scheme for OFDM-NOMA-Based Multi-User Visible Light Communications. J. Lightware Technol. 2019, 37, 4401–4409. [Google Scholar] [CrossRef]
- Lin, B.; Lai, Q.; Ghassemlooy, Z.; Tang, X. A Machine Learning Based Signal Demodulator in NOMA-VLC. J. Lightware Technol. 2021, 39, 3081–3087. [Google Scholar] [CrossRef]
- Lu, X.; Wang, K.; Qiao, L.; Zhou, W.; Wang, Y.; Chi, N. Nonlinear Compensation of Multi-CAP VLC System Employing Clustering Algorithm Based Perception Decision. IEEE Photonics J. 2017, 9, 1–9. [Google Scholar] [CrossRef]
- Ma, J.; Hea, J.; Shi, J.; Zhou, Z.; Deng, R. Nonlinear Compensation Based on K-Means Clustering Algorithm for Nyquist PAM-4 VLC System. IEEE Photonics Technol. Lett. 2019, 31, 935–938. [Google Scholar] [CrossRef]
- Lee, H.; Lee, I.; Lee, S.H. Deep learning based transceiver design for multi-colored VLC systems. Opt. Express 2018, 26, 6222–6238. [Google Scholar] [CrossRef]
- Ma, S.; Dai, J.; Lu, S.; Li, H.; Zhang, H.; Du, C.; Li, S. Signal Demodulation with Machine Learning Methods for Physical Layer Visible Light Communications: Prototype Platform, Open Dataset, and Algorithms. IEEE Access 2019, 7, 30588–30598. [Google Scholar] [CrossRef]
- Xiao, L.; Li, Y.; Dai, C.; Dai, H.; Poor, H.V. Reinforcement Learning-Based NOMA Power Allocation in the Presence of Smart Jamming. IEEE Trans. Veh. Technol. 2017, 67, 3377–3389. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Y.; Chen, Y.; Al-Dhahir, N. Cache-Aided NOMA Mobile Edge Computing: A Reinforcement Learning Approach. IEEE Trans. Wirel. Commun. 2020, 19, 6899–6915. [Google Scholar] [CrossRef]
- Doan, K.N.; Vaezi, M.; Shin, W.; Poor, H.V.; Shin, H.; Quek, T.Q.S. Power Allocation in Cache-Aided NOMA Systems: Optimization and Deep Reinforcement Learning Approaches. IEEE Trans. Commun. 2019, 68, 630–644. [Google Scholar] [CrossRef] [Green Version]
- Giang, H.T.H.; Hoan, T.N.K.; Thanh, P.D.; Koo, I. Hybrid NOMA/OMA-Based Dynamic Power Allocation Scheme Using Deep Reinforcement Learning in 5G Networks. Appl. Sci. 2020, 10, 4236. [Google Scholar] [CrossRef]
- He, C.; Hu, Y.; Chen, Y.; Zeng, B. Joint Power Allocation and Channel Assignment for NOMA With Deep Reinforcement Learning. IEEE J. Sel. Areas Commun. 2019, 37, 2200–2210. [Google Scholar] [CrossRef]
- Al Hammadi, A.; Bariah, L.; Muhaidat, S.; Al-Qutayri, M.; Sofotasios, P.C.; Debbah, M. Deep Q-Learning-Based Resource Allocation in NOMA Visible Light Communications. IEEE Open J. Commun. Soc. 2022, 3, 2284–2297. [Google Scholar] [CrossRef]
- Andiappan, V.; Ponnusamy, V. Deep Learning Enhanced NOMA System: A Survey on Future Scope and Challenges. Wirel. Pers. Commun. 2021, 123, 839–877. [Google Scholar] [CrossRef]
- Shehab, M.; Ciftler, B.S.; Khattab, T.; Abdallah, M.M.; Trinchero, D. Deep Reinforcement Learning Powered IRS-Assisted Downlink NOMA. IEEE Open J. Commun. Soc. 2022, 3, 729–739. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.-M.; Yang, Q.; Ding, Z. Secrecy Sum Rate Maximization in Non-orthogonal Multiple Access. IEEE Commun. Lett. 2016, 20, 930–933. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Qin, Z.; Elkashlan, M.; Gao, Y.; Hanzo, L. Enhancing the Physical Layer Security of Non-Orthogonal Multiple Access in Large-Scale Networks. IEEE Trans. Wirel. Commun. 2017, 16, 1656–1672. [Google Scholar] [CrossRef]
- ElHalawany, B.M.; Wu, K. Physical-Layer Security of NOMA Systems Under Untrusted Users. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Cao, K.; Wang, B.; Ding, H.; Li, T.; Tian, J.; Gong, F. Secure Transmission Designs for NOMA Systems Against Internal and External Eavesdropping. IEEE Trans. Inf. Forensics Secur. 2020, 15, 2930–2943. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, N.; Long, K.; Pan, M.; Karagiannidis, G.K.; Leung, V.C.M. Secure Communications in NOMA System: Subcarrier Assignment and Power Allocation. IEEE J. Sel. Areas Commun. 2018, 36, 1441–1452. [Google Scholar] [CrossRef] [Green Version]
- Lei, H.; Zhang, J.; Park, K.-H.; Xu, P.; Ansari, I.S.; Pan, G.; Alomair, B.; Alouini, M.-S. On Secure NOMA Systems with Transmit Antenna Selection Schemes. IEEE Access 2017, 5, 17450–17464. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Zhou, F.; Hu, R.Q.; Wang, B. Energy-Efficient Resource Allocation for Secure NOMA-Enabled Mobile Edge Computing Networks. IEEE Trans. Commun. 2019, 68, 493–505. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Chen, H.; Sun, J. On Physical-Layer Security in Multiuser Visible Light Communication Systems with Non-Orthogonal Multiple Access. IEEE Access 2018, 6, 34004–34017. [Google Scholar] [CrossRef]
- Arafa, A.; Panayirci, E.; Poor, H.V. Relay-Aided Secure Broadcasting for Visible Light Communications. IEEE Trans. Commun. 2019, 67, 4227–4239. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Sun, J. Physical-Layer Security for Mobile Users in NOMA-Enabled Visible Light Communication Networks. IEEE Access 2020, 8, 205411–205423. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Z.; Wang, Y.; Zhou, F.; Ma, S. Robust artificial noise-aided beamforming for a secure MISO-NOMA visible light communication system. China Commun. 2020, 17, 42–53. [Google Scholar] [CrossRef]
- Fath, T.; Haas, H. Performance Comparison of MIMO Techniques for Optical Wireless Communications in Indoor Environments. IEEE Trans. Commun. 2012, 61, 733–742. [Google Scholar] [CrossRef]
- Dixit, V.; Kumar, A. An Exact Error Analysis of Multi-User RC/MRC Based MIMO-NOMA-VLC System with Imperfect SIC. IEEE Access 2021, 9, 136710–136720. [Google Scholar] [CrossRef]
- Zheng, B.; Wen, M.; Wang, C.-X.; Wang, X.; Chen, F.; Tang, J.; Ji, F. Secure NOMA Based Two-Way Relay Networks Using Artificial Noise and Full Duplex. IEEE J. Sel. Areas Commun. 2018, 36, 1426–1440. [Google Scholar] [CrossRef]
- Furqan, H.M.; Hamamreh, J.; Arslan, H. Physical layer security for NOMA: Requirements, merits, challenges, and recommendations. arXiv 2019, arXiv:1905.05064. [Google Scholar]
- Yang, Y.; Chen, C.; Zhang, W.; Deng, X.; Du, P.; Yang, H.; Zhong, W.-D.; Chen, L. Secure and private NOMA VLC using OFDM with two-level chaotic encryption. Opt. Express 2018, 26, 34031–34042. [Google Scholar] [CrossRef] [Green Version]
- Mohsan, S.A.H.; Amjad, H. A comprehensive survey on hybrid wireless networks: Practical considerations, challenges, applications and research directions. Opt. Quantum Electron. 2021, 53, 523. [Google Scholar] [CrossRef]
- Obeed, M.; Salhab, A.M.; Zummo, S.A.; Alouini, M.-S. Joint Optimization of Power Allocation and Load Balancing for Hybrid VLC/RF Networks. J. Opt. Commun. Netw. 2018, 10, 553–562. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.; Kwak, K. Outage capacity and source distortion analysis for NOMA users in 5G systems. Electron. Lett. 2016, 52, 1344–1345. [Google Scholar] [CrossRef]
- Mao, Y.; Dizdar, O.; Clerckx, B.; Schober, R.; Popovski, P.; Poor, H.V. Rate-Splitting Multiple Access: Fundamentals, Survey, and Future Research Trends. IEEE Commun. Surv. Tutor. 2022, 24, 2073–2126. [Google Scholar] [CrossRef]
- Ding, Z.; Fan, P.; Poor, H.V. Random Beamforming in Millimeter-Wave NOMA Networks. IEEE Access 2017, 5, 7667–7681. [Google Scholar] [CrossRef]
- Wei, Z.; Zhao, L.; Guo, J.; Ng, D.W.K.; Yuan, J. Multi-Beam NOMA for Hybrid mmWave Systems. IEEE Trans. Commun. 2018, 67, 1705–1719. [Google Scholar] [CrossRef] [Green Version]
- Qiu, M.; Huang, Y.-C.; Shieh, S.-L.; Yuan, J. A Lattice-Partition Framework of Downlink Non-Orthogonal Multiple Access Without SIC. IEEE Trans. Commun. 2018, 66, 2532–2546. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, C.; Wang, J.; Jing, Y.; Yang, L.; You, X. Signal Processing for MIMO-NOMA: Present and Future Challenges. IEEE Wirel. Commun. 2018, 25, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Shahab, M.B.; Irfan, M.; Kader, F.; Shin, S.Y. User pairing schemes for capacity maximization in non-orthogonal multiple access systems. Wirel. Commun. Mob. Comput. 2016, 16, 2884–2894. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, F.; Li, R. Enhancing power allocation efficiency of NOMA aided-MIMO downlink VLC networks. Opt. Commun. 2019, 454, 124497. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, J.; Xiao, Z.; Cao, X.; Wu, D.O. Optimal User Pairing for Downlink Non-Orthogonal Multiple Access (NOMA). IEEE Wirel. Commun. Lett. 2018, 8, 328–331. [Google Scholar] [CrossRef]
Reference | Communication Domain | Research Contribution |
---|---|---|
[8] | 5G networks | Review of challenges and potentials of PD-NOMA for 5G systems |
[15] | 5G networks | It surveys NOMA techniques for 5G networks |
[16] | 6G networks | It provides future vision and research opportunities for next generation NOMA |
[5] | VLC | GRPA scheme to enhance performance of NOMA systems |
[14] | VLC | EPA method to enhance energy efficiency of NOMA-aided IoT sensor networks |
[17] | VLC | NGDPA scheme to improve capacity of NIMO-NOMA |
[18] | VLC | Power allocation and user pairing methods for downlink NOMA-VLC |
[19] | VLC | Survey of research challenges and future trends for VLC-NOMA |
[20] | RF communication | DDPA technique for mMIMO-aided NOMA |
[21] | RF communication | Energy-efficient PA for multiuser MIMO-NOMA |
[22] | RF communication | PA to ensure QoS requirements in NOMA systems |
[23] | RF communication | PA to ensure individual QoS requirements in downlink NOMA systems |
[24] | Hybrid RF/VLC | Link selection and user pairing in Co-NOMA systems |
[25] | Hybrid RF/VLC | Improvement of reliability and outage performance of co-NOMA systems |
Characteristics | 1G | 2G | 3G | 4G | 5G |
---|---|---|---|---|---|
Time span | 1970–1980 | 1990–2004 | 2004–2010 | 2010–Now | Around 2020 |
MA technique | FDMA | CDMA/TDMA | CDMA | OFDMA | NOMA |
Physical resource | Frequency | Time | Time/PN codes | Orthogonal frequency | Power domain/Code domain |
Network’s core | PSTN | PSTN | Packet network | Internet | Internet |
Duplex mode | FDD | FDD | FDD/TDD | FDD/TDD | FDD/TDD |
Technologies | NMT, AMPS | IS-54, GSM | EDGE, UMTS | LTE, LTE-A, Wimax | Mm Waves, MIMO |
Frequency | 30 kHz | 1.8 GHz | 1.6–2 GHz | 2–8 GHz | 3–30 GHz |
Data rate | 2 Kbps | 64 Kbps | 2 Mbps | 1 Gbps | >1 Gbps |
Hand off | Horizontal | Horizontal | Horizontal | Horizontal/Vertical | Horizontal/Vertical |
Services | Analog voice | Digital voice, SMS, MMS | Audio/Video | Mobile multimedia, wearable devices | IoT, video streaming, interactive multimedia, 3D games |
Reference | Objective | Research Findings |
---|---|---|
[6] | Evaluation of error vector magnitude, BER, and spectral efficiency | Given technique is more robust and outperforms OFDM-based NOMA |
[17] | To maximize the sum rate | NGDPA enhances the sum rate performance as compared to GRPA |
[34] | Ergodic sum rate and coverage probability analysis | NOMA outperforms traditional OMA technique |
[53] | To maximize the sum rate | The performance of NOMA-OFDM is better than OMA-OFDM in the context of achievable data rate |
[56] | BER analysis | Closed-loop expressions for BER validate simulation results |
[58] | Rate splitting | Offers an overview of MA techniques in VLC systems. It proposes rate-splitting multiple access (RSMA) and highlights its potentials and capabilities in VLC systems. |
[59] | To maximize the sum rate | WDM-NOMA outperforms NOMA in the context of sum rate |
[62] | Outage probability analysis | Rate splitting trade-off permits outage performance balancing among users |
[63] | To maximize the sum rate | Game theory based optimal power allocation and user grouping |
[64] | Evaluation of user fairness, outage probability, and sum rate | Dynamically choosing the appropriate MA technique that attains better performance |
[65] | To maximize the sum rate and max-min rate criteria | Optimized power allocation and user grouping to achieve high sum rate than OMA |
[66] | BER analysis | Enhanced BER performance compared to NOMA considering SIC for various power levels |
[67] | SER analysis | Users at various locations attain identical SER through adequate power allocation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohsan, S.A.H.; Sadiq, M.; Li, Y.; Shvetsov, A.V.; Shvetsova, S.V.; Shafiq, M. NOMA-Based VLC Systems: A Comprehensive Review. Sensors 2023, 23, 2960. https://doi.org/10.3390/s23062960
Mohsan SAH, Sadiq M, Li Y, Shvetsov AV, Shvetsova SV, Shafiq M. NOMA-Based VLC Systems: A Comprehensive Review. Sensors. 2023; 23(6):2960. https://doi.org/10.3390/s23062960
Chicago/Turabian StyleMohsan, Syed Agha Hassnain, Muhammad Sadiq, Yanlong Li, Alexey V. Shvetsov, Svetlana V. Shvetsova, and Muhammad Shafiq. 2023. "NOMA-Based VLC Systems: A Comprehensive Review" Sensors 23, no. 6: 2960. https://doi.org/10.3390/s23062960
APA StyleMohsan, S. A. H., Sadiq, M., Li, Y., Shvetsov, A. V., Shvetsova, S. V., & Shafiq, M. (2023). NOMA-Based VLC Systems: A Comprehensive Review. Sensors, 23(6), 2960. https://doi.org/10.3390/s23062960