An Anti-Noise Fast Circle Detection Method Using Five-Quadrant Segmentation
<p>Location of N(1–8) around P.</p> "> Figure 2
<p>The results of our algorithm at different noise levels.</p> "> Figure 3
<p>Intermediate results of the algorithm.</p> "> Figure 4
<p>Results of our algorithm under different levels of Gaussian noise.</p> "> Figure 5
<p>The F-measure results of five algorithms under different levels of Gaussian noise.</p> "> Figure 6
<p>Variation of F-measure on dataset GH.</p> "> Figure 7
<p>Variation of F-measure on dataset MY.</p> ">
Abstract
:1. Introduction
- (1)
- We propose a noise suppression algorithm and an arc segmentation algorithm, which can suppress the interference of noise while preserving the arc.
- (2)
- We use a five-quadrant segmentation least-squares circle fitting algorithm, which avoids many invalid fittings, and is verified by the coincidence ratio.
2. Materials and Methods
2.1. Image Preprocessing
2.1.1. Edge Extraction
2.1.2. Contour Refinement and Curve Extraction
2.2. Suppression of Noise Interference and Arc Segmentation
2.2.1. Suppression of Noise Interference
2.2.2. Arc Segmentation
2.3. Circle Detection
2.3.1. Five-Quadrant Division Method
2.3.2. Arc Fitting
2.3.3. Candidate Circle Detection
2.3.4. Remove Duplicate Circles
2.3.5. Find the True Circle
3. Proposed Circle Detection Algorithm
- Step 1.
- Input a picture and perform 5 × 5 Median filtering on it;
- Step 2.
- Adaptive Canny edge extraction is used to obtain edge point information;
- Step 3.
- The edge point information is contoured to remove redundant edge points. The thinned edge points are connected into curves;
- Step 4.
- Direction filtering of curves is used to suppress noise;
- Step 5.
- A circular arc that divides a curve into segments;
- Step 6.
- The arc is divided into five quadrants according to the position relationship between the arc and the center of the circle;
- Step 7.
- Least squares circle fitting of circular arcs is performed within five quadrants. The set of candidate circles is found;
- Step 8.
- Remove duplicate circles from candidate circles;
- Step 9.
- Find the true circle in the candidate circle and mark it.
4. Results
4.1. Noise Test
4.2. Dataset Testing
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Deng, H.; Liu, Y.; Xu, Q.; Liu, G. A Semi-Supervised Semantic Segmentation Method for Blast-Hole Detection. Symmetry 2022, 14, 653. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.; Zhu, Q.; Zhang, H.; Chen, Q. Circle detection with model fitting in polar coordinates for glass bottle mouth localization. Int. J. Adv. Manuf. Technol. 2022, 120, 1041–1051. [Google Scholar] [CrossRef]
- He, Z.; Ma, Y.; Wang, Z.; Li, E. A novel efficient method for welding spots detection. Multimed. Tools Appl. 2022, 81, 26381–26401. [Google Scholar] [CrossRef]
- Nguyen, E.H.; Yang, H.; Deng, R.; Lu, Y.; Zhu, Z.; Roland, J.T.; Lu, L.; Landman, B.A.; Fogo, A.B.; Huo, Y. Circle Representation for Medical Object Detection. IEEE Trans. Med. Imaging 2021, 41, 746–754. [Google Scholar] [CrossRef]
- Guerrero, J.M.; Muñoz, A.; Santos, M.; Pajares, G. A new Concentric Circles Detection method for Object Detection applied to Radar Images. J. Navig. 2019, 72, 1070–1088. [Google Scholar] [CrossRef]
- Xue, P.; Jiang, Y.; Wang, H.; He, H. Accurate Detection Method of Aviation Bearing Based on Local Characteristics. Symmetry 2019, 11, 1069. [Google Scholar] [CrossRef] [Green Version]
- Duda, R.O.; Hart, P.E. Use of the Hough transformation to detect lines and curves in pictures. Commun. Acm 1972, 15, 11–15. [Google Scholar] [CrossRef]
- Xu, L.; Oja, E.; Kultanen, P. A new curve detection method: Randomized Hough transform (RHT). Pattern Recognit. Lett. 1990, 11, 331–338. [Google Scholar] [CrossRef]
- Chen, T.-C.; Chung, K.-L. An efficient randomized algorithm for detecting circles. Comput. Vis. Image Underst. 2001, 83, 172–191. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L. A fast and accurate circle detection algorithm based on random sampling. Future Gener. Comput. Syst. 2021, 123, 245–256. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, Z.; Ye, Y.; Jiang, J. Fast circle detection algorithm based on sampling from difference area. Optik 2018, 158, 424–433. [Google Scholar] [CrossRef]
- Wang, G. A sub-pixel circle detection algorithm combined with improved RHT and fitting. Multimed. Tools Appl. 2020, 79, 29825–29843. [Google Scholar] [CrossRef]
- Le, T.; Duan, Y. Circle detection on images by line segment and circle completeness. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3648–3652. [Google Scholar]
- Von Gioi, R.G.; Jakubowicz, J.; Morel, J.-M.; Randall, G. LSD: A fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 32, 722–732. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Deng, H.; Zhang, Z.; Xu, Q. A Fast Circle Detector with Efficient Arc Extraction. Symmetry 2022, 14, 734. [Google Scholar] [CrossRef]
- Yao, Z.; Yi, W. Curvature aided Hough transform for circle detection. Expert Syst. Appl. 2016, 51, 26–33. [Google Scholar] [CrossRef]
- Ou, Y.; Deng, H.; Liu, Y.; Zhang, Z.; Ruan, X.; Xu, Q.; Peng, C. A Fast Circle Detection Algorithm Based on Information Compression. Sensors 2022, 22, 7267. [Google Scholar] [CrossRef]
- Zhao, M.; Jia, X.; Yan, D.-M. An occlusion-resistant circle detector using inscribed triangles. Pattern Recognit. 2021, 109, 107588. [Google Scholar] [CrossRef]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679–698. [Google Scholar] [CrossRef]
- Chia, A.Y.-S.; Rahardja, S.; Rajan, D.; Leung, M.K. A split and merge based ellipse detector with self-correcting capability. IEEE Trans. Image Process. 2010, 20, 1991–2006. [Google Scholar] [CrossRef]
- Available online: https://github.com/yzjba/CACD (accessed on 15 October 2022).
- Lu, C.; Xia, S.; Huang, W.; Shao, M.; Fu, Y. Circle detection by arc-support line segments. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 76–80. [Google Scholar]
- Available online: https://github.com/AlanLuSun/Circle-detection (accessed on 15 October 2022).
- Prasad, D.K.; Leung, M.K.; Cho, S.-Y. Edge curvature and convexity based ellipse detection method. Pattern Recognit. 2012, 45, 3204–3221. [Google Scholar] [CrossRef]
- Jia, Q.; Fan, X.; Luo, Z.; Song, L.; Qiu, T. A fast ellipse detector using projective invariant pruning. IEEE Trans. Image Process. 2017, 26, 3665–3679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fornaciari, M.; Prati, A.; Cucchiara, R. A fast and effective ellipse detector for embedded vision applications. Pattern Recognit. 2014, 47, 3693–3708. [Google Scholar] [CrossRef]
- Available online: https://github.com/zikai1/CircleDetection (accessed on 14 April 2022).
Dataset | Index | RCD | CACD | Wang | AS | Our |
---|---|---|---|---|---|---|
Dataset GH | Precision | 0.13 | 0.50 | 0.32 | 0.63 | 0.65 |
Recall | 0.57 | 0.73 | 0.51 | 0.69 | 0.71 | |
F-measure | 0.12 | 0.54 | 0.29 | 0.61 | 0.64 | |
Time/s | 1.68 | 1.07 | 1.55 | 0.1 | 0.07 | |
Dataset GH | Precision | 0.12 | 0.46 | 0.19 | 0.57 | 0.66 |
Recall | 0.57 | 0.57 | 0.49 | 0.51 | 0.63 | |
F-measure | 0.1 | 0.46 | 0.12 | 0.49 | 0.62 | |
Time/s | 1.68 | 1.14 | 1.95 | 0.09 | 0.11 | |
Dataset GH | Precision | 0.05 | 0.28 | 0.1 | 0.35 | 0.58 |
Recall | 0.57 | 0.32 | 0.47 | 0.25 | 0.48 | |
F-measure | 0.05 | 0.26 | 0.08 | 0.27 | 0.49 | |
Time/s | 1.69 | 2.30 | 1.91 | 0.06 | 0.14 | |
Dataset GH | Precision | 0.03 | 0.22 | 0.06 | 0.14 | 0.51 |
Recall | 0.57 | 0.22 | 0.47 | 0.09 | 0.38 | |
F-measure | 0.03 | 0.18 | 0.06 | 0.1 | 0.41 | |
Time/s | 1.69 | 2.78 | 2 | 0.05 | 0.16 | |
Dataset GH | Precision | 0.02 | 0.17 | 0.05 | 0.05 | 0.41 |
Recall | 0.55 | 0.19 | 0.47 | 0.04 | 0.3 | |
F-measure | 0.02 | 0.15 | 0.04 | 0.04 | 0.33 | |
Time/s | 1.71 | 2.99 | 2.1 | 0.05 | 0.16 | |
Dataset GH | Precision | 0.02 | 0.14 | 0.04 | 0.02 | 0.36 |
Recall | 0.54 | 0.16 | 0.47 | 0.02 | 0.27 | |
F-measure | 0.02 | 0.12 | 0.04 | 0.02 | 0.3 | |
Time/s | 1.71 | 3.14 | 2.18 | 0.05 | 0.17 | |
Dataset GH | Precision | 0.02 | 0.12 | 0.04 | 0.01 | 0.31 |
Recall | 0.52 | 0.14 | 0.46 | 0.01 | 0.22 | |
F-measure | 0.02 | 0.10 | 0.02 | 0.01 | 0.25 | |
Time/s | 1.73 | 3.24 | 2.25 | 0.05 | 0.17 |
Dataset | Index | RCD | CACD | Wang | AS | Our |
---|---|---|---|---|---|---|
Dataset MY | Precision | 0.17 | 0.62 | 0.35 | 0.69 | 0.63 |
Recall | 0.29 | 0.54 | 0.3 | 0.65 | 0.61 | |
F-measure | 0.12 | 0.54 | 0.25 | 0.63 | 0.59 | |
Time/s | 1.69 | 1.3 | 1.54 | 0.09 | 0.08 | |
Dataset MY | Precision | 0.15 | 0.45 | 0.2 | 0.55 | 0.63 |
Recall | 0.29 | 0.31 | 0.27 | 0.37 | 0.55 | |
F-measure | 0.07 | 0.33 | 0.14 | 0.4 | 0.55 | |
Time/s | 1.71 | 2.27 | 1.59 | 0.09 | 0.1 | |
Dataset MY | Precision | 0.08 | 0.36 | 0.11 | 0.17 | 0.6 |
Recall | 0.29 | 0.23 | 0.27 | 0.07 | 0.49 | |
F-measure | 0.05 | 0.25 | 0.08 | 0.09 | 0.5 | |
Time/s | 1.73 | 2.88 | 1.65 | 0.07 | 0.12 | |
Dataset MY | Precision | 0.05 | 0.29 | 0.08 | 0.06 | 0.56 |
Recall | 0.28 | 0.18 | 0.27 | 0.02 | 0.44 | |
F-measure | 0.04 | 0.19 | 0.06 | 0.03 | 0.45 | |
Time/s | 1.75 | 3.44 | 1.67 | 0.06 | 0.14 | |
Dataset MY | Precision | 0.04 | 0.24 | 0.06 | 0.00 | 0.52 |
Recall | 0.27 | 0.15 | 0.27 | 0.00 | 0.39 | |
F-measure | 0.04 | 0.16 | 0.04 | 0.00 | 0.41 | |
Time/s | 1.75 | 3.76 | 1.7 | 0.05 | 0.15 | |
Dataset MY | Precision | 0.03 | 0.2 | 0.05 | 0.00 | 0.48 |
Recall | 0.27 | 0.13 | 0.27 | 0.00 | 0.36 | |
F-measure | 0.03 | 0.13 | 0.04 | 0.00 | 0.38 | |
Time/s | 1.76 | 4 | 1.71 | 0.05 | 0.16 | |
Dataset MY | Precision | 0.02 | 0.18 | 0.05 | 0.00 | 0.44 |
Recall | 0.25 | 0.11 | 0.27 | 0.00 | 0.32 | |
F-measure | 0.03 | 0.12 | 0.04 | 0.00 | 0.34 | |
Time/s | 1.76 | 4.16 | 1.75 | 0.05 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, Y.; Deng, H.; Liu, Y.; Zhang, Z.; Lan, X. An Anti-Noise Fast Circle Detection Method Using Five-Quadrant Segmentation. Sensors 2023, 23, 2732. https://doi.org/10.3390/s23052732
Ou Y, Deng H, Liu Y, Zhang Z, Lan X. An Anti-Noise Fast Circle Detection Method Using Five-Quadrant Segmentation. Sensors. 2023; 23(5):2732. https://doi.org/10.3390/s23052732
Chicago/Turabian StyleOu, Yun, Honggui Deng, Yang Liu, Zeyu Zhang, and Xin Lan. 2023. "An Anti-Noise Fast Circle Detection Method Using Five-Quadrant Segmentation" Sensors 23, no. 5: 2732. https://doi.org/10.3390/s23052732
APA StyleOu, Y., Deng, H., Liu, Y., Zhang, Z., & Lan, X. (2023). An Anti-Noise Fast Circle Detection Method Using Five-Quadrant Segmentation. Sensors, 23(5), 2732. https://doi.org/10.3390/s23052732