Photoplethysmography Signal Wavelet Enhancement and Novel Features Selection for Non-Invasive Cuff-Less Blood Pressure Monitoring
<p>Workflow of data analysis.</p> "> Figure 2
<p>Alignment of the normalized PPG and ABP signals.</p> "> Figure 3
<p>Different morphologies of PPG pulses of <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>N</mi> <mi>O</mi> <mi>R</mi> <mi>M</mi> </mrow> </msub> </mrow> </semantics></math> with characteristic points for two different patients: (blue pulse) adult patient; (red pulse) neonate patient. Sampling frequency is 125 Hz.</p> "> Figure 4
<p>(<b>a</b>) Scaling function; (<b>b</b>) wavelet function.</p> "> Figure 5
<p>Pulse PPG before (blue) and after (red) the use of MODWT.</p> "> Figure 6
<p>ABP pulse corresponding to the PPG pulse with SBP and DBP values.</p> "> Figure 7
<p>(<b>a</b>) Histogram of errors for systolic locations; (<b>b</b>) boxplot of errors with mean, mean + std and mean − std.</p> "> Figure 8
<p>(<b>a</b>) Histogram of errors for diastolic locations; (<b>b</b>) boxplot of errors with mean, mean + std and mean − std.</p> "> Figure 9
<p>(<b>a</b>) Histogram of errors for dicrotic notch locations; (<b>b</b>) boxplot of errors with mean, mean + std and mean − std.</p> "> Figure 10
<p>(<b>a</b>) Feature importance scores sorted using RReliefF algorithm for SBP measurement; (<b>b</b>) feature importance scores sorted using CFS algorithm for SBP measurement; (<b>c</b>) feature importance scores sorted using MRMR algorithm for SBP measurement. Feature labels are noted as follows: (*) calculated on <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>F</mi> <mi>I</mi> <mi>L</mi> <mi>T</mi> </mrow> </msub> </mrow> </semantics></math> (i.e., before MODWT enhancement), (°) calculated on <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mi>O</mi> <mi>D</mi> <mi>W</mi> <mi>T</mi> </mrow> </msub> </mrow> </semantics></math> (i.e., after MODWT enhancement), (-) calculated on the normalized signal <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>N</mi> <mi>O</mi> <mi>R</mi> <mi>M</mi> </mrow> </msub> </mrow> </semantics></math>, (+) new feature and (#) already known feature.</p> "> Figure 10 Cont.
<p>(<b>a</b>) Feature importance scores sorted using RReliefF algorithm for SBP measurement; (<b>b</b>) feature importance scores sorted using CFS algorithm for SBP measurement; (<b>c</b>) feature importance scores sorted using MRMR algorithm for SBP measurement. Feature labels are noted as follows: (*) calculated on <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>F</mi> <mi>I</mi> <mi>L</mi> <mi>T</mi> </mrow> </msub> </mrow> </semantics></math> (i.e., before MODWT enhancement), (°) calculated on <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mi>O</mi> <mi>D</mi> <mi>W</mi> <mi>T</mi> </mrow> </msub> </mrow> </semantics></math> (i.e., after MODWT enhancement), (-) calculated on the normalized signal <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>N</mi> <mi>O</mi> <mi>R</mi> <mi>M</mi> </mrow> </msub> </mrow> </semantics></math>, (+) new feature and (#) already known feature.</p> "> Figure 11
<p>(<b>a</b>) Feature importance scores sorted using RReliefF algorithm for DBP measurement; (<b>b</b>) feature importance scores sorted using CFS algorithm for DBP measurement; (<b>c</b>) feature importance scores sorted using MRMR algorithm for DBP measurement. Feature labels are noted similarly to <a href="#sensors-23-02321-f010" class="html-fig">Figure 10</a>.</p> "> Figure 11 Cont.
<p>(<b>a</b>) Feature importance scores sorted using RReliefF algorithm for DBP measurement; (<b>b</b>) feature importance scores sorted using CFS algorithm for DBP measurement; (<b>c</b>) feature importance scores sorted using MRMR algorithm for DBP measurement. Feature labels are noted similarly to <a href="#sensors-23-02321-f010" class="html-fig">Figure 10</a>.</p> ">
Abstract
:1. Introduction
2. Dataset Pre-Processing and Labeling
2.1. Dataset
2.2. Alignment
2.3. Chunking
2.4. Pre-Processing
2.5. Pulse Segmentation and Labeling
3. Features Extraction
- , obtained after the baseline correction;
- , obtained after normalization of in the range [0;1] for each pulse separately;
- , obtained from after the MODWT enhancement that will be discussed later in this section.
4. Error Analysis of SP, DP and DN Characteristic Points Estimation
5. Features Selection
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Celler, B.G.; Sparks, R.S. Home Telemonitoring of Vital Signs—Technical Challenges and Future Directions. IEEE J. Biomed. Health Inform. 2015, 19, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Teng, X.; Zhang, Y.; Poon, C.C.Y.; Bonato, P. Wearable Medical Systems for p-Health. IEEE Rev. Biomed. Eng. 2008, 1, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Arpaia, P.; Cuocolo, R.; Donnarumma, F.; Esposito, A.; Moccaldi, N.; Natalizio, A.; Prevete, R. Conceptual design of a machine learning-based wearable soft sensor for non-invasive cardiovascular risk assessment. Measurement 2021, 169, 108551. [Google Scholar] [CrossRef]
- Shao, D.; Yang, Y.; Liu, C.; Tsow, F.; Yu, H.; Tao, N. Noncontact Monitoring Breathing Pattern, Exhalation Flow Rate and Pulse Transit Time. IEEE Trans. Biomed. Eng. 2014, 61, 2760–2767. [Google Scholar] [CrossRef] [PubMed]
- Arpaia, P.; Moccaldi, N.; Prevete, R.; Sannino, I.; Tedesco, A. A Wearable EEG Instrument for Real-Time Frontal Asymmetry Monitoring in Worker Stress Analysis. IEEE Trans. Instrum. Meas. 2020, 69, 8335–8343. [Google Scholar] [CrossRef]
- Scarpetta, M.; Spadavecchia, M.; Andria, G.; Ragolia, M.; Giaquinto, N. Accurate simultaneous measurement of heartbeat and respiratory intervals using a smartphone. J. Instrum. 2022, 17, P07020. [Google Scholar] [CrossRef]
- De Palma, L.; Scarpetta, M.; Spadavecchia, M. Characterization of Heart Rate Estimation Using Piezoelectric Plethysmography in Time- and Frequency-domain. In Proceedings of the 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Bari, Italy, 1 June–July 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Castaneda, D.; Esparza, A.; Ghamari, M.; Soltanpur, C.; Nazeran, H. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int. J. Biosens. Bioelectron. 2018, 4, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Tamura, T.; Maeda, Y.; Sekine, M.; Yoshida, M. Wearable Photoplethysmographic Sensors—Past and Present. Electronics 2014, 3, 282–302. [Google Scholar] [CrossRef]
- Elgendi, M.; Fletcher, R.; Liang, Y.; Howard, N.; Lovell, N.H.; Abbott, D.; Lim, K.; Ward, R. The use of photoplethysmography for assessing hypertension. NPJ. Digit. Med. 2019, 2. [Google Scholar] [CrossRef] [Green Version]
- Nachman, D.; Gepner, Y.; Goldstein, N.; Kabakov, E.; Ben Ishay, A.; Littman, R.; Azmon, Y.; Jaffe, E.; Eisenkraft, A. Comparing blood pressure measurements between a photoplethysmography-based and a standard cuff-based manometry device. Sci. Rep. 2020, 10, 16116. [Google Scholar] [CrossRef]
- Block, R.C.; Yavarimanesh, M.; Natarajan, K.; Carek, A.; Mousavi, A.; Chandrasekhar, A.; Kim, C.-S.; Zhu, J.; Schifitto, G.; Mestha, L.K.; et al. Conventional pulse transit times as markers of blood pressure changes in humans. Sci. Rep. 2020, 10, 16373. [Google Scholar] [CrossRef] [PubMed]
- Bramwell, J.; Hill, A. The velocity of pulse wave in man. Proc. R. Soc. London Ser. B Contain. Pap. Biol. Character 1922, 93, 298–306. [Google Scholar]
- Geddes, L.; Voelz, M.; Babbs, C.; Bourl, J.; Tacker, W. Pulse transit time as an indicator of arterial blood pressure. Psychophysiology 1981, 18, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Slapničar, G.; Mlakar, N.; Luštrek, M. Blood Pressure Estimation from Photoplethysmogram Using a Spectro-Temporal Deep Neural Network. Sensors 2019, 19, 3420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harfiya, L.N.; Chang, C.C.; Li, Y.H. Continuous Blood Pressure Estimation Using Exclusively Photopletysmography by LSTM-Based Signal-to-Signal Translation. Sensors 2021, 21, 2952. [Google Scholar] [CrossRef]
- Kachuee, M.; Kiani, M.M.; Mohammadzade, H.; Shabany, M. Cuff-less high-accuracy calibration-free blood pressure estimation using pulse transit time. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015; pp. 1006–1009. [Google Scholar] [CrossRef]
- Chowdhury, M.H.; Shuzan, M.N.I.; Chowdhury, M.E.H.; Mahbub, Z.B.; Uddin, M.M.; Khandakar, A.; Reaz, M.B.I. Estimating Blood Pressure from the Photoplethysmogram Signal and Demographic Features Using Machine Learning Techniques. Sensors 2020, 20, 3127. [Google Scholar] [CrossRef]
- Tjahjadi, H.; Ramli, K. Noninvasive Blood Pressure Classification Based on Photoplethysmography Using K-Nearest Neighbors Algorithm: A Feasibility Study. Information 2020, 11, 93. [Google Scholar] [CrossRef] [Green Version]
- Hasanzadeh, N.; Ahmadi, M.M.; Mohammadzade, H. Blood Pressure Estimation Using Photoplethysmogram Signal and Its Morphological Features. IEEE Sens. J. 2020, 20, 4300–4310. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Li, Y.H.; Chang, C.C.; Harfiya, L.N. Generalized Deep Neural Network Model for Cuffless Blood Pressure Estimation with Photoplethysmogram Signal Only. Sensors 2020, 20, 5668. [Google Scholar] [CrossRef]
- Kurylyak, Y.; Lamonaca, F.; Grimaldi, D. A Neural Network-based method for continuous blood pressure estimation from a PPG signal. In Proceedings of the 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Minneapolis, MN, USA, 6–9 May 2013; pp. 280–283. [Google Scholar] [CrossRef]
- Moody, B.; Moody, G.; Villarroel, M.; Clifford, G.D.; Silva, I. MIMIC-III Waveform Database (version 1.0). PhysioNet 2020. Available online: https://physionet.org/content/mimic3wdb/1.0/ (accessed on 10 February 2023). [CrossRef]
- Johnson, A.E.W.; Pollard, T.J.; Shen, L.; Lehman, L.H.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Celi, L.A.; Mark, R.G. MIMIC-III, a freely accessible critical care database. Sci. Data 2016, 3, 160035. [Google Scholar] [CrossRef] [Green Version]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, E215–E220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, I.; Moody, G. An Open-source Toolbox for Analysing and Processing PhysioNet Databases in MATLAB and Octave. J. Open Res. Softw. 2014, 2, e27. [Google Scholar] [CrossRef] [Green Version]
- Xing, X.; Sun, M. Optical blood pressure estimation with photoplethysmography and FFT-based neural networks. Biomed. Opt. Express 2016, 7, 3007–3020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, H.; Min, S.D. Feasibility study for the non-invasive blood pressure estimation based on ppg morphology: Normotensive subject study. Biomed. Eng. Online 2017, 16, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elgendi, M. On the Analysis of Fingertip Photoplethysmogram Signals. Curr. Cardiol. Rev. 2012, 8, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.; Zhang, J.; Chen, F.; Zheng, D. Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches. J. Healthc. Eng. 2018, 2018, 1548647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otsuka, T.; Kawada, T.; Katsumata, M.; Ibuki, C. Utility of second derivative of the finger photoplethysmogram for the estimation of the risk of coronary heart disease in the general population. Circ. J. 2006, 70, 304–310. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Peeters, W.H.; Bezemer, R.; Long, X.; Paulussen, I.; Aarts, R.M.; Noordergraaf, G.J. Finger and forehead photoplethysmography-derived pulse-pressure variation and the benefits of baseline correction. J. Clin. Monit. Comput. 2019, 33, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Xing, X.; Ma, Z.; Zhang, M.; Zhou, Y.; Dong, W.; Song, M. An Unobtrusive and Calibration-free Blood Pressure Estimation Method using Photoplethysmography and Biometrics. Sci. Rep. 2019, 9, 8611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zong, W.; Heldt, T.; Moody, G.B.; Mark, R.G. An open-source algorithm to detect onset of arterial blood pressure pulses. Comput. Cardiol. 2003, 2003, 259–262. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Reisner, A.T.; Mark, R.G. A signal abnormality index for arterial blood pressure waveforms. In Proceedings of the 2006 Computers in Cardiology, Valencia, Spain, 17–20 September 2006; pp. 13–16. [Google Scholar]
- Rabbani, H.; Nezafat, R.; Gazor, S. Wavelet-Domain Medical Image Denoising Using Bivariate Laplacian Mixture Model. IEEE Trans. Biomed. Eng. 2009, 56, 2826–2837. [Google Scholar] [CrossRef] [PubMed]
- Andria, G.; Attivissimo, F.; Cavone, G.; Giaquinto, N.; Lanzolla, A.M.L. Linear Filtering of 2-D Wavelet Coefficients for Denoising Ultrasound Medical Images. Measurement 2012, 45, 1792–1800. [Google Scholar] [CrossRef]
- Adamo, F.; Andria, G.; Attivissimo, F.; Lanzolla, A.M.L.; Spadavecchia, M. A Comparative Study on Mother Wavelet Selection in Ultrasound Image Denoising. Measurement 2013, 46, 2447–2456. [Google Scholar] [CrossRef]
- Gurumoorthy, S.; Muppalaneni, N.B.; Kumari, G.S. EEG Signal Denoising Using Haar Transform and Maximal Overlap Discrete Wavelet Transform (MODWT) for the Finding of Epilepsy. In Epilepsy—Update on Classification, Etiologies, Instrumental Diagnosis and Treatment; IntechOpen: London, UK, 2020; Available online: https://www.intechopen.com/chapters/73163?msclkid=ae716888cf9a11ec9e5d6c434a9555c0 (accessed on 10 February 2023). [CrossRef]
- Zhang, Z.; Telesford, Q.K.; Giusti, C.; Lim, K.O.; Bassett, D.S. Choosing Wavelet Methods, Filters, and Lengths for Functional Brain Network Construction. PLoS ONE 2016, 11, e0157243. [Google Scholar] [CrossRef] [Green Version]
- Sundarasekar, R.; Thanjaivadivel, M.; Manogaran, G.; Kumar, P.M.; Varatharajan, R.; Chilamkurti, N.; Hsu, C.-H. Internet of Things with Maximal Overlap Discrete Wavelet Transform for Remote Health Monitoring of Abnormal ECG Signals. J. Med. Syst. 2018, 42, 228. [Google Scholar] [CrossRef]
- Millasseau, S.; Kelly, R.; Ritter, J.; Chowienczyk, P. Determination of age-related increases in large artery stiffness by digital pulse contour analysis. Clin. Sci. 2002, 103, 371–377. [Google Scholar] [CrossRef] [Green Version]
- Kira, K.; Rendell, L.A. The feature selection problem: Traditional methods and a new algorithm. Assoc. Adv. Artif. Intell. 1992, 2, 129–134. [Google Scholar]
- Kononenko, I.; Šimec, E.; Robnik-Šikonja, M. Overcoming the myopia of inductive learning algorithms with RELIEFF. Appl. Intell. 1997, 7, 39–55. [Google Scholar] [CrossRef]
- Roffo, G. Ranking to learn and learning to rank: On the role of ranking in pattern recognition applications. arXiv 2017, arXiv:1706.05933. [Google Scholar]
- Ding, C.; Peng, H. Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 2005, 3, 185–205. [Google Scholar] [CrossRef] [PubMed]
Mean (s) | Std (s) | |
---|---|---|
Systolic Points (SP) | 0.0097 | 0.0202 |
Diastolic Points (DP) | 0.0441 | 0.0486 |
Dicrotic Notch Points (DN) | 0.0458 | 0.0896 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attivissimo, F.; De Palma, L.; Di Nisio, A.; Scarpetta, M.; Lanzolla, A.M.L. Photoplethysmography Signal Wavelet Enhancement and Novel Features Selection for Non-Invasive Cuff-Less Blood Pressure Monitoring. Sensors 2023, 23, 2321. https://doi.org/10.3390/s23042321
Attivissimo F, De Palma L, Di Nisio A, Scarpetta M, Lanzolla AML. Photoplethysmography Signal Wavelet Enhancement and Novel Features Selection for Non-Invasive Cuff-Less Blood Pressure Monitoring. Sensors. 2023; 23(4):2321. https://doi.org/10.3390/s23042321
Chicago/Turabian StyleAttivissimo, Filippo, Luisa De Palma, Attilio Di Nisio, Marco Scarpetta, and Anna Maria Lucia Lanzolla. 2023. "Photoplethysmography Signal Wavelet Enhancement and Novel Features Selection for Non-Invasive Cuff-Less Blood Pressure Monitoring" Sensors 23, no. 4: 2321. https://doi.org/10.3390/s23042321
APA StyleAttivissimo, F., De Palma, L., Di Nisio, A., Scarpetta, M., & Lanzolla, A. M. L. (2023). Photoplethysmography Signal Wavelet Enhancement and Novel Features Selection for Non-Invasive Cuff-Less Blood Pressure Monitoring. Sensors, 23(4), 2321. https://doi.org/10.3390/s23042321