Multilayer Model in Soil Moisture Content Retrieval Using GNSS Interferometric Reflectometry
<p>Schematic diagram of the propagation path of the GNSS signal in the multi-layer soil model.</p> "> Figure 2
<p>Vertically polarized interference signal–SNR oscillation waveform.</p> "> Figure 3
<p>Interference signal comparison between the single-layer model and multi-layer model.</p> "> Figure 4
<p>The SNR waveform of the reflected signal after decoupling the direct reflected signal.</p> "> Figure 5
<p>The power reflectivity results for the two modes with different moisture intervals.</p> "> Figure 6
<p>Spectrum of the two models with different soil moisture changes without noise.</p> "> Figure 7
<p>The reflectivity of the second layer changes with SMC.</p> "> Figure 8
<p>The power reflectivity results for the two modes with different layers.</p> "> Figure 9
<p>SNR time sequence of the interference signal with Gaussian white noise and its envelope by Hilbert transform.</p> "> Figure 10
<p>EMD decomposition results and spectral characteristics.</p> "> Figure 11
<p>Spectrum of the two models with different soil moisture changes.</p> "> Figure 12
<p>The scatter plot of the set SMC and measurement results for the two modes.</p> ">
Abstract
:1. Introduction
2. Theory
3. Simulation Analysis
3.1. Unchanging Number of Layers
3.2. Variable Layer
3.3. Added Noise
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Egido, A.; Ruffini, G.; Caparrini, M.; Martin-Puig, C.; Farrés, E.; Banque, X. Soil Moisture Monitorization Using GNSS Reflected Signals. arXiv 2008, arXiv:0805.1881. [Google Scholar]
- Chew, C.; Small, E.; Larson, K. An algorithm for soil moisture estimation using GPS-interferometric reflectometry for bare and vegetated soil. GPS Solut. 2015, 20, 525–537. [Google Scholar] [CrossRef]
- Li, J.; Yang, D.; Wang, F.; Hong, X. A New Algorithm for Measuring Vegetation Growth Using GNSS Interferometric Reflectometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 16, 1033–1041. [Google Scholar] [CrossRef]
- Dahl-Jensen, T.; Andersen, O.; Williams, S.; Helm, V.; Khan, S. GNSS-IR Measurements of Inter Annual Sea Level Variations in Thule, Greenland from 2008–2019. Remote Sens. 2021, 13, 5077. [Google Scholar] [CrossRef]
- Geremia-Nievinski, F.; Larson, K. Inverse Modeling of GPS Multipath for Snow Depth Estimation—Part I: Formulation and Simulations. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6555–6563. [Google Scholar] [CrossRef]
- Geremia-Nievinski, F.; Larson, K. Inverse Modeling of GPS Multipath for Snow Depth Estimation—Part II: Application and Validation. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6564–6573. [Google Scholar] [CrossRef]
- Zavorotny, V.U.; Larson, K.M.; Braun, J.J.; Small, E.E.; Gutmann, E.D.; Bilich, A.L. A Physical Model for GPS Multipath Caused by Land Reflections: Toward Bare Soil Moisture Retrievals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 100–110. [Google Scholar] [CrossRef]
- Larson, K.; Small, E.; Gutmann, E.; Bilich, A.; Axelrad, P.; Braun, J. Using GPS multipath to measure soil moisture fluctuations: Initial results. GPS Solut. 2008, 12, 173–177. [Google Scholar] [CrossRef]
- Alonso-Arroyo, A.; Camps, A.; Aguasca, A.; Forte, G.; Monerris, A.; Rüdiger, C.; Walker, J.P.; Park, H.; Pascual, D.; Onrubia, R. Improving the Accuracy of Soil Moisture Retrievals Using the Phase Difference of the Dual-Polarization GNSS-R Interference Patterns. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2090–2094. [Google Scholar] [CrossRef]
- Jia, Y.; Savi, P. Polarimetric GNSS-R measurements for soil moisture and vegetation sensing. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2016, Beijing, China, 10–15 July 2016; pp. 5260–5263. [Google Scholar] [CrossRef]
- Zhang, S.; Roussel, N.; Boniface, K.; Ha, M.C.; Frappart, F.; Darrozes, J.; Baup, F.; Calvet, J.C. Use of reflected GNSS SNR data to retrieve either soil moisture or vegetation height from a wheat crop. Hydrol. Earth Syst. Sci. 2017, 21, 4767–4784. [Google Scholar] [CrossRef] [Green Version]
- Zribi, M.; Motte, E.; Baghdadi, N.; Baup, F.; Dayau, S.; Fanise, P.; Guyon, D.; Huc, M.; Wigneron, J.P. Potential Applications of GNSS-R Observations over Agricultural Areas: Results from the GLORI Airborne Campaign. Remote Sens. 2018, 10, 1245. [Google Scholar] [CrossRef]
- Camps, A.; Park, H.; Castellvi Esturi, J.; Corbera, J.; Ascaso, E. Single-Pass Soil Moisture Retrievals Using GNSS-R: Lessons Learned. Remote Sens. 2020, 12, 2064. [Google Scholar] [CrossRef]
- Shekhar, S.; Prakash, R.; Pandey, D.; Vidyarthi, A.; Tyagi, S.; Putrevu, D.; Misra, A. Sensitivity of Multipath Peak Frequency of Navigation with Indian Constellation (NavIC) towards Surface Soil Moisture over Bare Land. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021. [Google Scholar] [CrossRef]
- Koch, F.; Schlenz, F.; Prasch, M.; Appel, F.; Ruf, T.; Mauser, W. Soil Moisture Retrieval Based on GPS Signal Strength Attenuation. Water 2016, 8, 276. [Google Scholar] [CrossRef]
- Hong, X.; Zhang, B.; Geiger, A.; Han, M.; Yang, D. GNSS Pseudo Interference Reflectometry for Ground-Based Soil Moisture Remote Sensing: Theory and Simulations. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Yueji, L.; Lai, J.; Ren, C.; Lu, X.; Zhang, Y.; Ding, Q.; Hu, X. GNSS-IR Multisatellite Combination for Soil Moisture Retrieval Based on Wavelet Analysis Considering Detection and Repair of Abnormal Phases. Measurement 2022, 203, 111881. [Google Scholar] [CrossRef]
- Anyaegbu, E. A frequency domain quasi-open tracking loop for GNSS receivers. In Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation, Fort Worth, TX, USA, 26–29 September 2006; Volume 2, pp. 790–798. [Google Scholar]
- Altuntas, C.; Tunalioglu, N. Feasibility of retrieving effective reflector height using GNSS-IR from a single-frequency android smartphone SNR data. Digit. Signal Process. 2021, 112, 103011. [Google Scholar] [CrossRef]
- Kurum, M.; Farhad, M.M.; Gurbuz, A. Integration of Smartphones Into Small Unmanned Aircraft Systems to Sense Water in Soil by Using Reflected GPS Signals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 1048–1059. [Google Scholar] [CrossRef]
- Rodriguez Alvarez, N.; Bosch, X.; Camps, A.; Aguasca, A.; Vall-llossera, M.; Valencia, E.; Ramos-Perez, I. Review of crop growth and soil moisture monitoring from a ground-based instrument implementing the Interference Pattern GNSS-R Technique. Radio Sci. 2011, 46, 1–11. [Google Scholar] [CrossRef]
- Larson, K.M.; Small, E.E. Normalized Microwave Reflection Index: A Vegetation Measurement Derived From GPS Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1501–1511. [Google Scholar] [CrossRef]
- Mao, A.; Harrison, C.; Dixon, T. Noise in GPS coordinate time series. J. Geophys. Res. 1999, 104, 2797–2816. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Zhang, S.C.; Wang, Q.; Zhang, Q.; Zhang, J.J.; Nan, Y. GPS Signal to Noise Ratio Analysis and Using for Real-Time Tide Monitoring. In Proceedings of the China Satellite Navigation Conference (CSNC) 2017, Shanghai, China, 23–25 May 2017; Sun, J., Liu, J., Yang, Y., Fan, S., Yu, W., Eds.; Springer: Singapore, 2017; Volume I, pp. 151–161. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Hong, X.; Wang, F.; Yang, L.; Yang, D. Multilayer Model in Soil Moisture Content Retrieval Using GNSS Interferometric Reflectometry. Sensors 2023, 23, 1949. https://doi.org/10.3390/s23041949
Li J, Hong X, Wang F, Yang L, Yang D. Multilayer Model in Soil Moisture Content Retrieval Using GNSS Interferometric Reflectometry. Sensors. 2023; 23(4):1949. https://doi.org/10.3390/s23041949
Chicago/Turabian StyleLi, Jie, Xuebao Hong, Feng Wang, Lei Yang, and Dongkai Yang. 2023. "Multilayer Model in Soil Moisture Content Retrieval Using GNSS Interferometric Reflectometry" Sensors 23, no. 4: 1949. https://doi.org/10.3390/s23041949