Analysis and Suppression of Nonlinear Error of Pendulous Integrating Gyroscopic Accelerometer at Instrument Level
<p>Structure of PIGA: (<b>a</b>) appearance of PIGA; (<b>b</b>) structure of the instrument cabin; (<b>c</b>) structure of the electric circuit cabin; (<b>d</b>) structure of the core sensor element.</p> "> Figure 2
<p>Illustration of the working principle of PIGA.</p> "> Figure 3
<p>Established coordinates for kinematics and dynamics analyses of PIGA.</p> "> Figure 4
<p>Mechanism of quadratic term error due to (<b>a</b>) unequal inertia and (<b>b</b>) inertia product.</p> "> Figure 5
<p>Force on the float due to unequal stiffness.</p> "> Figure 6
<p>(<b>a</b>) Traditional servo control method for angle <math display="inline"><semantics> <mi>β</mi> </semantics></math>; (<b>a</b>) proposed servo control method for angle <math display="inline"><semantics> <mi>β</mi> </semantics></math> based on digital offset.</p> "> Figure 7
<p>Illustration of zero offset.</p> "> Figure 8
<p>Illustration of the mass removal: (<b>a</b>) two ends for mass removal; (<b>b</b>) details of mass removal on each end.</p> "> Figure 9
<p>Experimental setup for calibration of <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mn>2</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 10
<p>Measured quadratic term error under each <math display="inline"><semantics> <mrow> <mi>Δ</mi> <msub> <mi>β</mi> <mi>i</mi> </msub> </mrow> </semantics></math> (<math display="inline"><semantics> <mi>i</mi> </semantics></math> = 1, 2,…,21) and best <math display="inline"><semantics> <mrow> <mi>Δ</mi> <mi>β</mi> </mrow> </semantics></math> selection using the proposed method.</p> ">
Abstract
:1. Introduction
2. Structure and Working Principle of PIGA
2.1. Structure of PIGA
2.2. Working Principle of PIGA
3. Error Model of PIGA
3.1. Kinematics and Dynamics Analyses
- (1)
- Angular velocity
- (2)
- Angular momentum
- (3)
- Dynamic equation
3.2. Error Model
4. Analysis of Nonlinear Error
4.1. Quadratic Term Error
- (1)
- Influence of unequal inertia
- (2)
- Influence of inertia product
4.2. Cross-Coupling Error
4.3. Error Caused by Unequal Stiffness
5. Suppression Method for Nonlinear Error
5.1. Suppression of Nonlinear Error Caused by Unequal Inertia
5.2. Suppression of Nonlinear Error Caused by Inertia Product
6. Experimental Validation and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, K.; Shen, F.; Zhou, J.; Wu, X. Simulation Platform for SINS/GPS Integrated Navigation System of Hypersonic Vehicles Based on Flight Mechanics. Sensors 2020, 20, 5418. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Yang, G.; Cai, Q.; Wang, L.; Zhou, X. Optimal design of SINS’s Stewart platform bumper for restoration accuracy based on genetic algorithm. Mech. Mach. Theory 2018, 124, 42–54. [Google Scholar] [CrossRef]
- Zhang, M.-d.; Dai, H.-f.; Hu, B.-q.; Chen, Q. Robust adaptive UKF based on SVR for inertial based integrated navigation. Def. Technol. 2020, 16, 846–855. [Google Scholar] [CrossRef]
- Kang, Y.; Zhao, L.; Cheng, J.; Wu, M.; Fan, X. A Novel Grid SINS/DVL Integrated Navigation Algorithm for Marine Application. Sensors 2018, 18, 364. [Google Scholar] [CrossRef] [Green Version]
- Tu, Y.; Yang, G.; Cai, Q.; Wang, L.; Yin, H. Dynamical analysis and experimental verification of deviation angles caused by rubber dampers deformation in high precision mechanically dithered RLG dual-axis RINS. Mech. Syst. Signal Process. 2019, 126, 553–567. [Google Scholar] [CrossRef]
- Sun, Y.; Ren, S.; Wang, C. Calibration method of quartz accelerometer on dynamic centrifuge. Chin. J. Aeronaut. 2022, 35, 262–272. [Google Scholar] [CrossRef]
- Zhao, S.; Guo, C.; Ke, C.; Zhou, Y.; Shu, X. Temperature drift compensation of fiber strapdown inertial navigation system based on GSA-SVR. Measurement 2022, 195, 111117. [Google Scholar] [CrossRef]
- He, J.; Zhou, W.; Yu, H.; He, X.; Peng, P. Structural Designing of a MEMS Capacitive Accelerometer for Low Temperature Coefficient and High Linearity. Sensors 2018, 18, 643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.M.; Hanif, M.U.; Khan, A.; Hassan, M.U.; Javanmardi, A.; Ahmad, A. Damage assessment of reinforced concrete beams using cost-effective MEMS accelerometers. Structures 2022, 41, 602–618. [Google Scholar] [CrossRef]
- Li, C.; Zhao, Y.; Li, B.; Cheng, R.; Sun, D.; Han, C.; Zhao, Y. A micro-machined differential resonance accelerometer based on silicon on quartz method. Sens. Actuators A Phys. 2017, 253, 1–9. [Google Scholar] [CrossRef]
- Fang, Z.; Yin, Y.; Chen, C.; Zhang, S.; Liu, Y.; Han, F. A sensitive micromachined resonant accelerometer for moving-base gravimetry. Sens. Actuators A Phys. 2021, 325, 112694. [Google Scholar] [CrossRef]
- Yuan, Z.; Lu, Y.; Jinyun, Z.; Pei, Y. Specific azimuth self-calibration of PIGA of inertial platform system. In Proceedings of the 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE), Halifax, NS, Canada, 3–6 May 2015; pp. 286–290. [Google Scholar]
- Haeussermann, W.; Mueller, F.; Hopkins, R. The pendulous integrating gyroscope accelerometer (PIGA) from the V-2 to trident D5, the strategic instrument of choice. In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, QC, Canada, 6–9 August 2001; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2001. [Google Scholar]
- Kaiser, T.J.; Allen, M.G. A pendulous oscillating gyroscopic accelerometer fabricated using deep-reactive ion etching. J. Microelectromechanical Syst. 2003, 12, 21–28. [Google Scholar] [CrossRef]
- Wei, Y.; Yang, J.; Li, P.; Zhang, X.; Liang, P. Analysis and Optimization Method of the Vibration Rectification Error of a Pendulous Accelerometer. IEEE Sens. J. 2021, 21, 19847–19856. [Google Scholar] [CrossRef]
- Ren, S.; Wang, Y.; Cheng, Y.; Chen, S. Testing error analysis of accelerometer error model coefficients on indexing table. In Proceedings of the Sixth International Symposium on Precision Engineering Measurements and Instrumentation, Hangzhou, China, 31 December 2010; 7544, pp. 1376–1381. [Google Scholar]
- Coulter, J.; Meehan, J. Test methodology for evaluation of the input axis of a Pendulous Integrating Gyro Accelerometer. In Guidance and Control Conference; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1981. [Google Scholar]
- Xu, F.; Lu, Z.; Zhang, J. Study Total Least Squares Method Compensate the Test Error of Testing PIGA. In Proceedings of the 2010 Chinese Control and Decision Conference, Xuzhou, China, 26–28 May 2010; pp. 3280–3283. [Google Scholar]
- Xu, F.; Lu, Z.; Dai, X. The application of total least squares method in the error model identification of PIGA. In Proceedings of the 2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics, Harbin, China, 8–10 June 2010; pp. 406–409. [Google Scholar]
- Tkachuk, A.; Bezvesilna, O.; Dobrzhansky, O.; Ostapchuk, A. Single-rotor integrating gyroscopic gravimeter. J. Phys. Conf. Ser. 2021, 1840, 012023. [Google Scholar] [CrossRef]
- Qiao, Y.-H.; Liu, Y.; Su, B.-K. Study on PIGA Test Method on Centrifuge. In Proceedings of the 2007 International Conference on Computational Intelligence and Security (CIS 2007), 15–19 December 2007; pp. 42–47. [Google Scholar]
- Wang, S.; Ren, S. Calibration of cross quadratic term of gyro accelerometer on centrifuge and error analysis. Aerosp. Sci. Technol. 2015, 43, 30–36. [Google Scholar] [CrossRef]
- Ren, S.Q.; Sun, C. A New Method for Calibrating Nonlinear Coefficients of PIGA on Linear Vibrator. IEEE Trans. Instrum. Meas. 2019, 68, 2898–2906. [Google Scholar] [CrossRef]
- Sun, C.; Ren, S.Q.; Zeng, M.; Wang, C.H.; Huo, R. Sequential Calibration Method of Nonlinear Errors of PIGA on Counter-Rotating Platform Centrifuge. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Sun, C.; Ren, S.Q.; Cao, J.; Huo, R. Symmetric calibration method of pendulous Integrating Gyroscopic accelerometer on centrifuge. Measurement 2022, 200, 111685. [Google Scholar] [CrossRef]
- Barbour, N. Inertial components—past, present, and future. In AIAA Guidance, Navigation, and Control Conference and Exhibit; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2001. [Google Scholar]
- Luo, C.; Sun, J.; Wen, H.; Jin, D. Autonomous separation deployment dynamics of a space multi-rigid-body system with uncertain parameters. Mech. Mach. Theory 2023, 180, 105175. [Google Scholar] [CrossRef]
- García-Gutiérrez, A.; Cubas, J.; Chen, H.; Sanz-Andrés, Á. Complex variable methods for linearized Euler rigid body rotation equations. Acta Astronaut. 2020, 170, 454–465. [Google Scholar] [CrossRef]
- El-Sheimy, N.; Youssef, A. Inertial sensors technologies for navigation applications: State of the art and future trends. Satell. Navig. 2020, 1, 2. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Lan, L.; Zhu, C.-G.; Lei, F. Cubic spline interpolation with optimal end conditions. J. Comput. Appl. Math. 2023, 425, 115039. [Google Scholar] [CrossRef]
- Belkhouche, F. A Differential Accelerometer System: Offline Calibration and State Estimation. IEEE Trans. Instrum. Meas. 2019, 68, 3109–3118. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Yang, G.; Niu, W.; Tu, Y. Analysis and Suppression of Nonlinear Error of Pendulous Integrating Gyroscopic Accelerometer at Instrument Level. Sensors 2023, 23, 1221. https://doi.org/10.3390/s23031221
Zhou X, Yang G, Niu W, Tu Y. Analysis and Suppression of Nonlinear Error of Pendulous Integrating Gyroscopic Accelerometer at Instrument Level. Sensors. 2023; 23(3):1221. https://doi.org/10.3390/s23031221
Chicago/Turabian StyleZhou, Xiaojun, Gongliu Yang, Wentao Niu, and Yongqiang Tu. 2023. "Analysis and Suppression of Nonlinear Error of Pendulous Integrating Gyroscopic Accelerometer at Instrument Level" Sensors 23, no. 3: 1221. https://doi.org/10.3390/s23031221
APA StyleZhou, X., Yang, G., Niu, W., & Tu, Y. (2023). Analysis and Suppression of Nonlinear Error of Pendulous Integrating Gyroscopic Accelerometer at Instrument Level. Sensors, 23(3), 1221. https://doi.org/10.3390/s23031221