The Weight of Hyperion and PRISMA Hyperspectral Sensor Characteristics on Image Capability to Retrieve Urban Surface Materials in the City of Venice
<p>Study area: (<b>a</b>) IKONOS-2 image of study area; (<b>b</b>) study area location (green square) and locations of two intercalibration sites [<a href="#B57-sensors-23-00454" class="html-bibr">57</a>]: the runways of Marco Polo International Airport labeled with the number 1 and the Malamocco Golf Club labeled with the number 2.</p> "> Figure 2
<p>Comparison of the spectra acquired in situ (black) with the spectra of the Hyperion (red) and PRISMA (blue) atmospherically corrected images (the mean spectrum was plotted with a solid line, and the mean spectrum plus the standard deviation and minus the standard deviation were plotted with dashed lines): (<b>a</b>) asphalt spectra of the runways of Marco Polo International Airport (<a href="#sensors-23-00454-f001" class="html-fig">Figure 1</a>b shows the site location using the number 1); (<b>b</b>) grass spectra of the Malamocco Golf Club (<a href="#sensors-23-00454-f001" class="html-fig">Figure 1</a>b shows the site location using the number 2).</p> "> Figure 3
<p>Reference map.</p> "> Figure 4
<p>The spectral library (i.e., the mean spectra and the mean spectra plus and minus standard deviation values): (<b>a</b>) the spectra of lateritic tile and lead plate endmembers; (<b>b</b>) the spectra of asphalt, limestone, and trachyte rock endmembers; (<b>c</b>) the spectra of grass, tree, and lagoon water endmembers; (<b>d</b>) the spectra of cloth, metal, plastic, and wood endmembers.</p> "> Figure 4 Cont.
<p>The spectral library (i.e., the mean spectra and the mean spectra plus and minus standard deviation values): (<b>a</b>) the spectra of lateritic tile and lead plate endmembers; (<b>b</b>) the spectra of asphalt, limestone, and trachyte rock endmembers; (<b>c</b>) the spectra of grass, tree, and lagoon water endmembers; (<b>d</b>) the spectra of cloth, metal, plastic, and wood endmembers.</p> "> Figure 5
<p>The histograms of fractional abundances obtained from the reference fractional abundance maps: (<b>a</b>) the histograms of lateritic tile and lead plate endmembers; (<b>b</b>) the histograms of asphalt, limestone, and trachyte rock endmembers; (<b>c</b>) the histograms of grass, tree, and lagoon water endmembers.</p> "> Figure 6
<p>The comparison of the aSSMn<sub>k</sub> values (i.e., mean values and mean values plus and minus standard deviation values) evaluated from real and synthetic images: (<b>a</b>) the values obtained from Hyperion images; (<b>b</b>) the values obtained from PRISMA images.</p> "> Figure 7
<p>RMS<span class="html-italic"><sub>k</sub></span> values obtained from real and synthetic (square pattern) images of Hyperion and PRISMA sensors [<a href="#B68-sensors-23-00454" class="html-bibr">68</a>].</p> "> Figure 8
<p>The comparison of the MAE<sub>k</sub> values (MAE<sub>k-49–0%</sub> values are superimposed on the MAE<sub>kTotals</sub> values) evaluated from real and synthetic (square pattern) images: (<b>a</b>) the values obtained from Hyperion images; (<b>b</b>) the values obtained from PRISMA images.</p> "> Figure 9
<p>The comparison of the H-MAE<sub>k</sub> values evaluated from real and synthetic (diamond pattern) images: (<b>a</b>) the values obtained from Hyperion images; (<b>b</b>) the values obtained from PRISMA images.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Real Hyperspectral Data of the City of Venice
2.3. Synthetich Hyperspctral Data of the City of Venice
2.4. Processing Chain of Real and Synthetic Images
2.5. Spatial and Spectral Validation of the Results
3. Results
3.1. Accuracy of Synthetic Hyperspectral Images
3.2. Validation of Endmembers Retrieved from Real and Synthetic Images
3.3. Validation of Fractional Abundance Maps Retrieved from Real and Synthetic Images
4. Discussion
- Sensor characteristics weighed 72.3 ± 2.0% and 77.4 ± 1.9% on spectral accuracy in the RMSk values which were obtained from real Hyperion and PRISMA images, whereas the image pre-processing, processing, and validation steps weighed 27.7 ± 2.0 and 22.6 ± 1.9% on spectral accuracy in RMSk values;
- Sensor characteristics weighed 55.6 ± 2.0% and 59.0 ± 1.9% on spatial accuracy in the MAEk-Totals values which were obtained from real Hyperion and PRISMA images, whereas the image pre-processing, processing, and validation steps weighed 44.4 ± 2.0 and 41.0 ± 2.1% on spatial accuracy in the MAEk-Totals values;
- The errors in the co-localization and spatial resampling of the images weighed 22.6 and 22.3% on spatial accuracy in the MAEk-Totals values which were obtained from real Hyperion and PRISMA images;
- The difference between the radiometric precisions of the sensors weighed 6.81 and 5.91% on the RMSk and MAEk-Totals values which were obtained from real Hyperion image;
- The difference between the radiometric precisions of the sensors weighed 13.04 and 10.28% on RMSk and MAEk-Totals values which were obtained from real Hyperion image to determine the lagoon water endmember;
- The ranking list of endmembers of surface materials in the city of Venice according to their accuracies was determined by sensor characteristics, except for the endmember of lagoon water (i.e., vegetation endmembers showed the highest values of accuracy, followed, in descending order, by building roofing materials, street paving materials, and lagoon water endmembers).
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goetz, A.F.; Vane, G.; Solomon, J.E.; Rock, B.N. Imaging Spectrometry for Earth Remote Sensing. Science 1985, 228, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Goetz, A.F.; Srivastava, V. Mineralogical Mapping in the Cuprite Mining District, Nevada. In Proceedings of the Airborne Imaging Spectrometer Data Analysis Workshop, Pasadena, CA, USA, 8–10 April 1985. [Google Scholar]
- Qian, S.-E. Hyperspectral Satellites, Evolution, and Development History. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7032–7056. [Google Scholar] [CrossRef]
- Ungar, S.; Pearlman, J.; Mendenhall, J.; Reuter, D. Overview of the Earth Observing-1 (EO-1) Mission. IEEE T. Geosci. Remote 2003, 41, 1149–1159. [Google Scholar] [CrossRef]
- Goetz, A.F. Imaging Spectrometry for Remote Sensing: Vision to Reality in 15 Years. In Proceedings of the Imaging Spectrometry, SPIE, Orlando, FL, USA, 12 June 1995; Volume 2480, pp. 2–13. [Google Scholar]
- Babey, S.; Anger, C. A Compact Airborne Spectrographic Imager (CASI). Quant. Remote Sens. Econ. Tool Nineties 1989, 2, 1028–1031. [Google Scholar]
- Bassani, C.; Cavalli, M.; Palombo, A.; Pignatti, S.; Madonna, F. Laboratory Activity for a New Procedure of MIVIS Calibration and Relative Validation with Test Data. 2006. Available online: https://www.annalsofgeophysics.eu/index.php/annals/article/view/3148/3193 (accessed on 4 October 2022).
- Neville, R.; Powell, I. Design of SFSI: An Imaging Spectrometer in the SWIR. Can. J. Remote Sens. 1992, 18, 210–222. [Google Scholar] [CrossRef]
- Yu, H.; Kong, B.; Hou, Y.; Xu, X.; Chen, T.; Liu, X. A Critical Review on Applications of Hyperspectral Remote Sensing in Crop Monitoring. Exp. Agric. 2022, 58, e26. [Google Scholar] [CrossRef]
- Barnsley, M.J.; Settle, J.J.; Cutter, M.A.; Lobb, D.R.; Teston, F. The PROBA/CHRIS Mission: A Low-Cost Smallsat for Hyperspectral Multiangle Observations of the Earth Surface and Atmosphere. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1512–1520. [Google Scholar] [CrossRef]
- Aumann, H.H.; Chahine, M.T.; Gautier, C.; Goldberg, M.D.; Kalnay, E.; McMillin, L.M.; Revercomb, H.; Rosenkranz, P.W.; Smith, W.L.; Staelin, D.H.; et al. AIRS/AMSU/HSB on the Aqua Mission: Design, Science Objectives, Data Products, and Processing Systems. IEEE Trans. Geosci. Remote Sens. 2003, 41, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Saha, A.; Dadhwal, V. Some Issues Related with Sub-Pixel Classification Using HYSI Data from IMS-1 Satellite. J. Indian Soc. Remote Sens. 2010, 38, 203–210. [Google Scholar] [CrossRef]
- Wang, L.; Yang, S.; Xi, X.; Li, W. Applications of Small Satellite Constellation for Environment and Disaster Monitoring and Forecastring (SSCEDMF) in Disaster Monitoring and Assessment. In Proceedings of the ISPRS, International Conference on Geo-spatial Solutions for Emergency Management and the 50th Anniversary of the Chinese Academy of Surveying and Mapping, Beijing, China, 14–16 September 2009. [Google Scholar]
- Lucke, R.L.; Corson, M.; McGlothlin, N.R.; Butcher, S.D.; Wood, D.L.; Korwan, D.R.; Li, R.R.; Snyder, W.A.; Davis, C.O.; Chen, D.T. Hyperspectral Imager for the Coastal Ocean: Instrument Description and First Images. Appl. Opt. 2011, 50, 1501. [Google Scholar] [CrossRef]
- Cao, S.; Qi, W.; Tan, W.; Zhou, N.; Hu, Y. Main Processes for OVS-1A & OVS-1B: From Manufacturer to User. JCC 2018, 6, 126–137. [Google Scholar] [CrossRef]
- Alonso, K.; Bachmann, M.; Burch, K.; Carmona, E.; Cerra, D.; de los Reyes, R.; Dietrich, D.; Heiden, U.; Hölderlin, A.; Ickes, J.; et al. Data Products, Quality and Validation of the DLR Earth Sensing Imaging Spectrometer (DESIS). Sensors 2019, 19, 4471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Duan, Y.; Sun, D.; Hu, X.; Liu, S.; Cao, K.; Chai, M.; Liao, Q.; Zuo, Z.; Hao, Z.; et al. Development of Visible and Short-Wave Infrared Hyperspectral Imager Onboard GF-5 Satellite. J. Remote Sens. 2020, 24, 333–344. [Google Scholar]
- Loizzo, R.; Daraio, M.; Guarini, R.; Longo, F.; Lorusso, R.; Dini, L.; Lopinto, E. Prisma Mission Status and Perspective. In Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 4503–4506. [Google Scholar]
- Matsunag, T.; Iwasaki, A.; Tachikawa, T.; Tanii, J.; Kashimura, O.; Mouri, K.; Inada, H.; Tsuchida, S.; Nakamura, R.; Yamamoto, H.; et al. The Status of Hyperspectral Imager Suite (HISUI): One Year After Launch. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11 July 2021; pp. 1384–1385. [Google Scholar]
- Storch, T.; Honold, H.-P.; Habermeyer, M.; Tucker, P.; Ohndorf, A.; Wirth, K.; Löw, S.; Zimmermann, S.; Betz, M.; Kuchler, M.; et al. Final Results Building EnMAP and First Results Operating EnMAP. In Proceedings of the 12th EARSeL Workshop on Imaging Spectroscopy, Potsdam, Germany, 21–24 June 2022. [Google Scholar]
- Cavalli, R.; Betti, M.; Campanelli, A.; Cicco, A.; Guglietta, D.; Penna, P.; Piermattei, V. A Methodology to Assess the Accuracy with Which Remote Data Characterize a Specific Surface, as a Function of Full Width at Half Maximum (FWHM): Application to Three Italian Coastal Waters. Sensors 2014, 14, 1155–1183. [Google Scholar] [CrossRef] [PubMed]
- Cavalli, R.M. Local, Daily, and Total Bio-Optical Models of Coastal Waters of Manfredonia Gulf Applied to Simulated Data of CHRIS, Landsat TM, MIVIS, MODIS, and PRISMA Sensors for Evaluating the Error. Remote Sens. 2020, 12, 1428. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, L.; He, M.-X. Simulation of Shallow Water Depth Data Merging for HJ-1A/HSI and EO-1/Hyperion. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 2957–2960. [Google Scholar]
- Jia, S.; Qian, Y. Spectral and Spatial Complexity-Based Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3867–3879. [Google Scholar]
- Jia, S.; Qian, Y. Constrained Nonnegative Matrix Factorization for Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2008, 47, 161–173. [Google Scholar] [CrossRef]
- Wang, S.; Guan, K.; Zhang, C.; Lee, D.; Margenot, A.J.; Ge, Y.; Peng, J.; Zhou, W.; Zhou, Q.; Huang, Y. Using Soil Library Hyperspectral Reflectance and Machine Learning to Predict Soil Organic Carbon: Assessing Potential of Airborne and Spaceborne Optical Soil Sensing. Remote Sens. Environ. 2022, 271, 112914. [Google Scholar] [CrossRef]
- Castaldi, F.; Chabrillat, S.; van Wesemael, B. Sampling Strategies for Soil Property Mapping Using Multispectral Sentinel-2 and Hyperspectral EnMAP Satellite Data. Remote Sens. 2019, 11, 309. [Google Scholar] [CrossRef] [Green Version]
- Dobigeon, N.; Tits, L.; Somers, B.; Altmann, Y.; Coppin, P. A Comparison of Nonlinear Mixing Models for Vegetated Areas Using Simulated and Real Hyperspectral Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1869–1878. [Google Scholar] [CrossRef] [Green Version]
- Cavalli, R.M. Capability of Remote Sensing Images to Distinguish the Urban Surface Materials: A Case Study of Venice City. Remote Sens. 2021, 13, 3959. [Google Scholar] [CrossRef]
- Keshava, N.; Mustard, J.F. Spectral Unmixing. IEEE Signal Process. Mag. 2002, 19, 44–57. [Google Scholar] [CrossRef]
- Heylen, R.; Parente, M.; Gader, P. A Review of Nonlinear Hyperspectral Unmixing Methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1844–1868. [Google Scholar] [CrossRef]
- Cavalli, R.M.; Pascucci, S.; Pignatti, S. Optimal Spectral Domain Selection for Maximizing Archaeological Signatures: Italy Case Studies. Sensors 2009, 9, 1754–1767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchi, R.; Cavalli, R.M.; Marino, C.M.; Pignatti, S.; Poscolieri, M. Use of Airborne Hyperspectral Images to Assess the Spatial Distribution of Oil Spilled during the Trecate Blow-out (Northern Italy). In Proceedings of the Remote Sensing for Agriculture, Forestry, and Natural Resources, Paris, France, 26–28 September 1995; International Society for Optics and Photonics: Bellingham, WA, USA, 1995; Volume 2585, pp. 352–362. [Google Scholar]
- Jimenez, L.I.; Martin, G.; Plaza, A. A New Tool for Evaluating Spectral Unmixing Applications for Remotely Sensed Hyperspectral Image Analysis. In Proceedings of the International Conference Geographic Object-Based Image Analysis (GEOBIA), Rio de Janeiro, Brazil, 7–9 May 2012; pp. 1–5. [Google Scholar]
- Boardman, J.W. Automating Spectral Unmixing of AVIRIS Data Using Convex Geometry Concepts. In Proceedings of the JPL, Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop, Washington, DC, USA, 25–29 October 1993. [Google Scholar]
- Winter, M.E. N-FINDR: An Algorithm for Fast Autonomous Spectral End-Member Determination in Hyperspectral Data. In Proceedings of the Imaging Spectrometry V, Denver, CO, USA, 19–21 July 1999; International Society for Optics and Photonics: Bellingham, WA, USA, 1999; Volume 3753, pp. 266–275. [Google Scholar]
- Neville, R. Automatic Endmember Extraction from Hyperspectral Data for Mineral Exploration. In Proceedings of the International Airborne Remote Sensing Conference and Exhibition, 4 th/21 st Canadian Symposium on Remote Sensing, Ottawa, ON, Canada, 21–24 June 1999. [Google Scholar]
- Debba, P.; Carranza, E.J.; van der Meer, F.D.; Stein, A. Abundance Estimation of Spectrally Similar Minerals by Using Derivative Spectra in Simulated Annealing. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3649–3658. [Google Scholar] [CrossRef]
- Boardman, J. Spectral Angle Mapping: A Rapid Measure of Spectral Similarity. AVIRIS. Deliv. By Ingenta 1993. [Google Scholar]
- Du, Y.; Chang, C.-I.; Ren, H.; Chang, C.-C.; Jensen, J.O.; D’Amico, F.M. New Hyperspectral Discrimination Measure for Spectral Characterization. Opt. Eng. 2004, 43, 1777–1786. [Google Scholar]
- Vincini, M.; Frazzi, E.; D’Alessio, P. Narrow-Band Vegetation Indexes from Hyperion and Directional Chris/Proba Data for Canopy Chlorophyll Density Estimation in Maize. In Proceedings of the Envisat Symposium, Montreaux, Switzerland, 24–27 April 2007; pp. 23–27. [Google Scholar]
- Li, X.; Wu, T.; Liu, K.; Li, Y.; Zhang, L. Evaluation of the Chinese Fine Spatial Resolution Hyperspectral Satellite TianGong-1 in Urban Land-Cover Classification. Remote Sens. 2016, 8, 438. [Google Scholar] [CrossRef] [Green Version]
- Romaniello, V.; Silvestri, M.; Buongiorno, M.F.; Musacchio, M. Comparison of PRISMA Data with Model Simulations, Hyperion Reflectance and Field Spectrometer Measurements on ‘Piano Delle Concazze’(Mt. Etna, Italy). Sensors 2020, 20, 7224. [Google Scholar] [CrossRef]
- Pascucci, S.; Cavalli, R.; Palombo, A.; Pignatti, S. Suitability of CASI and ATM Airborne Remote Sensing Data for Archaeological Subsurface Structure Detection under Different Land Cover: The Arpi Case Study (Italy). J. Geophys. Eng. 2010, 7, 183–189. [Google Scholar] [CrossRef]
- Vangi, E.; D’Amico, G.; Francini, S.; Giannetti, F.; Lasserre, B.; Marchetti, M.; Chirici, G. The New Hyperspectral Satellite PRISMA: Imagery for Forest Types Discrimination. Sensors 2021, 21, 1182. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Chen, S.; Zhu, B.; Chen, L.; Ye, Y.; Lu, P. Evaluating the Capability of Satellite Hyperspectral Imager, the ZY1–02D, for Topsoil Nitrogen Content Estimation and Mapping of Farmlands in Black Soil Area, China. Remote Sens. 2022, 14, 1008. [Google Scholar] [CrossRef]
- Abbate, G.; Cavalli, R.M.; Pascucci, S.; Pignatti, S.; Poscolieri, M. Relations between Morphological Settings and Vegetation Covers in a Medium Relief Landscape of Central Italy. 2006. Available online: https://www.annalsofgeophysics.eu/index.php/annals/article/view/3165/3210 (accessed on 4 October 2022).
- Cogliati, S.; Sarti, F.; Chiarantini, L.; Cosi, M.; Lorusso, R.; Lopinto, E.; Miglietta, F.; Genesio, L.; Guanter, L.; Damm, A.; et al. The PRISMA Imaging Spectroscopy Mission: Overview and First Performance Analysis. Remote Sens. Environ. 2021, 262, 112499. [Google Scholar] [CrossRef]
- Bassani, C.; Cavalli, R.M.; Antonelli, P. Influence of Aerosol and Surface Reflectance Variability on Hyperspectral Observed Radiance. Atmos. Meas. Tech. 2012, 5, 1193–1203. [Google Scholar] [CrossRef] [Green Version]
- Adler-Golden, S.M.; Matthew, M.W.; Bernstein, L.S.; Levine, R.Y.; Berk, A.; Richtsmeier, S.C.; Acharya, P.K.; Anderson, G.P.; Felde, J.W.; Gardner, J.; et al. Atmospheric Correction for Shortwave Spectral Imagery Based on MODTRAN4. In Proceedings of the Imaging Spectrometry V, Denver, CO, USA, 19–21 July 1999; International Society for Optics and Photonics: Bellingham, WA, USA, 1999; Volume 3753, pp. 61–69. [Google Scholar]
- Avanzi, G.; Bianchi, R.; Cavalli, R.M.; Fiumi, L.; Marino, C.M.; Pignatti, S. Use of MIVIS Navigational Data for Precise Aircraft Positioning and Attitude Estimation. In Proceedings of the Remote Sensing for Geography, Geology, Land Planning, and Cultural Heritage, Taormina, Italy, 23–26 September 1996; International Society for Optics and Photonics: Bellingham, WA, USA, 1996; Volume 2960, pp. 184–192. [Google Scholar]
- Cavalli, R.M. Comparison of Split Window Algorithms for Retrieving Measurements of Sea Surface Temperature from MODIS Data in Near-Land Coastal Waters. ISPRS Int. J. Geo-Inf. 2018, 7, 30. [Google Scholar] [CrossRef]
- Ichoku, C.; Karnieli, A. A Review of Mixture Modeling Techniques for Sub-Pixel Land Cover Estimation. Remote Sens. Rev. 1996, 13, 161–186. [Google Scholar] [CrossRef]
- Williams, M.; Parody, R.; Fafard, A.; Kerekes, J.; van Aardt, J. Validation of Abundance Map Reference Data for Spectral Unmixing. Remote Sens. 2017, 9, 473. [Google Scholar] [CrossRef] [Green Version]
- Abrams, M.; Cavalli, R.; Pignatti, S. Intercalibration and Fusion of Satellite and Airborne Multispectral Data over Venice. In Proceedings of the 2003 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, Berlin, Germany, 22–23 May 2003; pp. 241–242. [Google Scholar]
- Cavalli, R.; Fusilli, L.; Pascucci, S.; Pignatti, S.; Santini, F. Hyperspectral Sensor Data Capability for Retrieving Complex Urban Land Cover in Comparison with Multispectral Data: Venice City Case Study (Italy). Sensors 2008, 8, 3299–3320. [Google Scholar] [CrossRef] [Green Version]
- Abrams, M.; Alberotanza, L.; Cavalli, R.; Cuomo, V.; Pignatti, S.; Tramutoli, V. Airborne and Satellite Hyperspectral Data over the Venice Test Site. In Proceedings of the Spectra Workshop, Noordwijk, The Netherlands, 12–13 June 2001. [Google Scholar]
- Folkman, M.A.; Pearlman, J.; Liao, L.B.; Jarecke, P.J. EO-1/Hyperion Hyperspectral Imager Design, Development, Characterization, and Calibration. Hyperspectr. Remote Sens. Land Atmos. 2001, 4151, 40–51. [Google Scholar]
- Loizzo, R.; Guarini, R.; Daraio, M.G.; Lopinto, E. The Hyperspectral PRISMA Mission and Its First Results. Available online: https://www.enea.it/it/seguici/events/telerilevamento_25-26giu2019/ASIPRISMA_Guarini.pdf (accessed on 6 October 2022).
- Goodenough, D.G.; Dyk, A.; Niemann, K.O.; Pearlman, J.S.; Chen, H.; Han, T.; Murdoch, M.; West, C. Processing Hyperion and ALI for Forest Classification. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1321–1331. [Google Scholar] [CrossRef]
- Berk, A.; Bernstein, L.; Anderson, G.; Acharya, P.; Robertson, D.; Chetwynd, J.; Adler-Golden, S. MODTRAN Cloud and Multiple Scattering Upgrades with Application to AVIRIS. Remote Sens. Environ. 1998, 65, 367–375. [Google Scholar] [CrossRef]
- Townshend, J.R.; Justice, C.O.; Gurney, C.; McManus, J. The Impact of Misregistration on Change Detection. IEEE Trans. Geosci. Remote Sens. 1992, 30, 1054–1060. [Google Scholar] [CrossRef] [Green Version]
- Cavalli, R.M. Spatial Validation of Spectral Unmixing Results: A Case Study of Venice City. Remote Sens. 2022, 14, 5165. [Google Scholar] [CrossRef]
- Santini, F.; Alberotanza, L.; Cavalli, R.M.; Pignatti, S. A Two-Step Optimization Procedure for Assessing Water Constituent Concentrations by Hyperspectral Remote Sensing Techniques: An Application to the Highly Turbid Venice Lagoon Waters. Remote Sens. Environ. 2010, 114, 887–898. [Google Scholar] [CrossRef]
- Demarchi, L.; Canters, F.; Chan, J.C.-W.; Van de Voorde, T. Multiple Endmember Unmixing of CHRIS/Proba Imagery for Mapping Impervious Surfaces in Urban and Suburban Environments. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3409–3424. [Google Scholar] [CrossRef]
- Zhang, C. Multiscale Quantification of Urban Composition from EO-1/Hyperion Data Using Object-Based Spectral Unmixing. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 153–162. [Google Scholar] [CrossRef]
- Franke, J.; Roberts, D.A.; Halligan, K.; Menz, G. Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of Hyperspectral Imagery for Urban Environments. Remote Sens. Environ. 2009, 113, 1712–1723. [Google Scholar] [CrossRef]
- Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R.O. Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models. Remote Sens. Environ. 1998, 65, 267–279. [Google Scholar] [CrossRef]
- Cavalli, R. Retrieval of Sea Surface Temperature from MODIS Data in Coastal Waters. Sustainability 2017, 9, 2032. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.B.; Smith, M.O.; Gillespie, A.R. Imaging Spectroscopy: Interpretation Based on Spectral Mixture Analysis. In Remote Geochemical Analysis: Elemental and Mineralogical Composition; Pieters, C.M., Englert, P., Eds.; Cambridge Univ. Press: New York, NY, USA, 1993; pp. 145–166. [Google Scholar]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making Better Use of Accuracy Data in Land Change Studies: Estimating Accuracy and Area and Quantifying Uncertainty Using Stratified Estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Santini, F.; Palombo, A. Impact of Topographic Correction on PRISMA Sentinel 2 and Landsat 8 Images. Remote Sens. 2022, 14, 3903. [Google Scholar] [CrossRef]
- Cavalli, R.M.; Pignatti, S.; Zappitelli, E. Correction of Sun Glint Effect on MIVIS Data of the Sicily Campaign in July 2000. 2006. Available online: https://www.annalsofgeophysics.eu/index.php/annals/article/view/3150/3195 (accessed on 4 October 2022).
- Gasmi, A.; Gomez, C.; Chehbouni, A.; Dhiba, D.; El Gharous, M. Using PRISMA Hyperspectral Satellite Imagery and GIS Approaches for Soil Fertility Mapping (FertiMap) in Northern Morocco. Remote Sens. 2022, 14, 4080. [Google Scholar] [CrossRef]
- Wei, J.; Wang, X. An Overview on Linear Unmixing of Hyperspectral Data. Math. Probl. Eng. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Yang, J.; He, Y.; Oguchi, T. An Endmember Optimization Approach for Linear Spectral Unmixing of Fine-Scale Urban Imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 137–146. [Google Scholar] [CrossRef]
The First Airborne Hyperspectral Sensor | Designed/Developed by (Country) | Year | Reference |
---|---|---|---|
Airborne Imaging Spectrometer (AIS) | Jet Propulsion Laboratory (JPL-USA) | 1980 | [1] |
Airborne Visible Infrared Imaging Spectrometer (AVIRIS) | Jet Propulsion Laboratory (JPL-USA) | 1984 | [5] |
Compact Airborne Spectrographic Imager (CASI) | ITRES (Canada) | 1989 | [6] |
Multispectral Infrared Visible Imaging Spectrometer (MIVIS) | National Research Council (CNR-Italy)/Daedalus Inc. (USA) | 1991 | [7] |
SWIR Full Spectrographic Imager (SFSI) | ITRES (Canada) | 1992 | [8] |
Sensor | Spatial Resolution (m) | Bands | Spectral Region | Spectral Coverage (μm) | Radiometric Precision * (Signal/Noise) |
---|---|---|---|---|---|
Hyperion | 30 | 220 | VNIR | 0.400–1.000 | >144/1 |
SWIR | 0.900–2.500 | >40/1 | |||
PRISMA | 30 | 63 | VNIR | 0.400–0.972 | >160/1 (>450/1 at 0.65 μm) |
171 | SWIR | 0.942–2.496 | >100/1 (>360/1 at 1.55 μm) |
Hyperion Images | PRISMA Images | |
---|---|---|
Endmembers | biassim | biassim |
Lateritic tiles | 1.2% | 0.9% |
Lead plates | 1.5% | 1.3% |
Asphalt | 2.0% | 1.4% |
Limestone | 1.4% | 1.0% |
Trachyte rock | 2.0% | 1.4% |
Grass | 1.0% | 0.6% |
Trees | 1.0% | 0.6% |
Lagoon water | 2.7% | 1.7% |
Endmembers | Percentage of RMSk Values Due to Hyperion Sensor Characteristics | Percentage of RMSk Values Due to PRISMA Sensor Characteristics |
---|---|---|
Lateritic tiles | 80.0 ± 2.0 | 85.7 ± 1.9 |
Lead plates | 81.3 ± 1.6 | 81.3 ± 1.6 |
Asphalt | 71.4 ± 2.2 | 75.0 ± 2.1 |
Limestone | 68.2 ± 2.7 | 75.0 ± 2.4 |
Trachyte rock | 68.2 ± 2.2 | 75.0 ± 2.2 |
Grass | 75.0 ± 1.7 | 80.0 ± 1.6 |
Trees | 77.8 ± 1.7 | 82.4 ± 1.5 |
Lagoon water | 56.5 ± 2.2 | 65.0 ± 2.1 |
Percentage of MAEk-Totals Values That Were Obtained from Hyperion Images Due to | ||
---|---|---|
Endmembers | Sensor Characteristics | Errors in Co-Localization and Spatial Resampling |
Lateritic tiles | 61.5 ± 2.0 | 22.8 |
Lead plates | 61.1 ± 1.6 | 22.6 |
Asphalt | 43.8 ± 2.2 | 23.9 |
Limestone | 45.5 ± 2.7 | 24.2 |
Trachyte rock | 46.7 ± 2.2 | 23.9 |
Grass | 70.5 ± 1.7 | 21.2 |
Trees | 71.1 ± 1.7 | 21.9 |
Lagoon water | 45.9 ± 2.2 | 20.1 |
Percentage of MAEk-Totals Values That Were Obtained from PRISMA Images Due to | ||
---|---|---|
Endmembers | Sensor Characteristics | Errors in Co-Localization and Spatial Resampling |
Lateritic tiles | 63.5 ± 1.9 | 22.4 |
Lead plates | 65.7 ± 1.6 | 22.6 |
Asphalt | 48.4 ± 2.1 | 24.3 |
Limestone | 47.8 ± 2.4 | 24.1 |
Trachyte rock | 48.8 ± 2.2 | 23.3 |
Grass | 72.1 ± 1.6 | 20.6 |
Trees | 74.5 ± 1.5 | 21.1 |
Lagoon water | 51.1 ± 2.1 | 19.9 |
Endmembers | Percentage of H-MAEk-Totals Values Due to Hyperion Image Characteristics | Percentage of H-MAEk-Totals Values Due to PRISMA Images Characteristics |
---|---|---|
Lateritic tiles | 83.3 ± 2.0 | 86.0 ± 1.9 |
Lead plates | 83.7 ± 1.6 | 88.2 ± 1.6 |
Asphalt | 67.7 ± 2.2 | 72.6 ± 2.1 |
Limestone | 69.7 ± 2.7 | 71.9 ± 2.4 |
Trachyte rock | 70.5 ± 2.2 | 72.1 ± 2.2 |
Grass | 91.7 ± 1.7 | 92.7 ± 1.6 |
Trees | 93.0 ± 1.7 | 95.6 ± 1.5 |
Lagoon water | 66.0 ± 2.2 | 71.0 ± 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavalli, R.M. The Weight of Hyperion and PRISMA Hyperspectral Sensor Characteristics on Image Capability to Retrieve Urban Surface Materials in the City of Venice. Sensors 2023, 23, 454. https://doi.org/10.3390/s23010454
Cavalli RM. The Weight of Hyperion and PRISMA Hyperspectral Sensor Characteristics on Image Capability to Retrieve Urban Surface Materials in the City of Venice. Sensors. 2023; 23(1):454. https://doi.org/10.3390/s23010454
Chicago/Turabian StyleCavalli, Rosa Maria. 2023. "The Weight of Hyperion and PRISMA Hyperspectral Sensor Characteristics on Image Capability to Retrieve Urban Surface Materials in the City of Venice" Sensors 23, no. 1: 454. https://doi.org/10.3390/s23010454
APA StyleCavalli, R. M. (2023). The Weight of Hyperion and PRISMA Hyperspectral Sensor Characteristics on Image Capability to Retrieve Urban Surface Materials in the City of Venice. Sensors, 23(1), 454. https://doi.org/10.3390/s23010454