Quantitative Evaluation of In Vivo Corneal Biomechanical Properties after SMILE and FLEx Surgery by Acoustic Radiation Force Optical Coherence Elastography
<p>The ARF-OCE experiment protocol of the SMILE and FLEx surgery, (<b>a</b>) is the SMILE surgery incision structure, the SMILE procedure preserves most of the anterior corneal stroma by creating a small 2–3 mm incision in the anterior corneal stroma and removing the stromal microcrystalline lens; (<b>b</b>) is the FLEx surgery flap structure, the FLEx procedure uses a femtosecond laser to create a corneal flap on the surface of the cornea and then thin the stroma.</p> "> Figure 2
<p>The acoustic radiation force based OCE system diagram. The swept laser with a central wavelength of 1310 nm is split by a 1:99 optical coupler and then enters the reference arm and the sample arm, respectively, and the interference signal is detected by an optical balance detector. The laser provides the sampling trigger signal and sampling clock signal. The synchronization control signal of the acoustic radiation force excitation is generated by the computer and synchronized with the OCT sampling clock.</p> "> Figure 3
<p>The ARF-OCE experiment results of the normal cornea, (<b>a</b>) is the structure image of the cornea in OCT B-scan, (<b>b</b>) is the vibration mapping in the OCE B-scan, and (<b>c</b>) is the spatial-temporal displacement diagram of the Lamb wave.</p> "> Figure 4
<p>The phase velocity calculation of the Lamb wave in normal cornea, (<b>a</b>) is the wave number-frequency map of the Lamb wave, (<b>b</b>) is the phase velocity curve depends on the frequency, and (<b>c</b>) is the depth-resolved elastography result of the normal cornea.</p> "> Figure 5
<p>The FLEx surgery corneal images, (<b>a</b>) is the FLEx surgery surface morphology, (<b>b</b>) is the 3D reconstruction structure, (<b>c</b>) is the 2D tomography, (<b>d</b>) is the spatial-temporal displacement diagram of the Lamb wave, (<b>e</b>) is depth-resolved elastography result of the cornea.</p> "> Figure 6
<p>The SMILE surgery corneal images, (<b>a</b>) is the SMILE surgery surface morphology, (<b>b</b>) is the 3D reconstruction structure, (<b>c</b>) is the 2D tomography, (<b>d</b>) is the spatial-temporal displacement diagram of the Lamb wave, and (<b>e</b>) is depth-resolved elastography result of the cornea.</p> "> Figure 7
<p>Elastic modulus statistical results of the normal cornea, corneal cap/fap and RSB before and after FLEx and SMILE surgery.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Surgical Techniques
2.2. Pre-Operative and Post-Operative Examinations
2.3. Design of the Acoustic Radiation Force Optical Coherence Elastography System
2.4. Quantification of the Elastic Modulus
2.5. Statistical Analysis
3. Results
3.1. Central Corneal Thickness
3.2. ARF-OCE Results of Normal Cornea
3.3. ARF-OCE Results of the FLEx and SMILE Surgery
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nordan, L.T.; Slade, S.G.; Baker, R.N.; Suarez, C.; Juhasz, T.; Kurtz, R. Femtosecond laser flap creation for laser in situ keratomileusis: Six-month follow-up of initial U.S. clinical series. J. Refract. Surg. 2003, 19, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Sugar, A. Ultrafast (femtosecond) laser refractive surgery. Curr. Opin. Ophthalmol. 2002, 13, 246–249. [Google Scholar] [CrossRef]
- Sekundo, W.; Kunert, K.S.; Blum, M. Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: Results of a 6 month prospective study. Br. J. Ophthalmol. 2011, 95, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Spiru, B.; Kling, S.; Hafezi, F.; Sekundo, W. Biomechanical Differences Between Femtosecond Lenticule Extraction (FLEx) and Small Incision Lenticule Extraction (SmILE) Tested by 2D-Extensometry in Ex Vivo Porcine Eyes. Invest. Ophthalmol. Vis. Sci. 2017, 58, 2591–2595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damgaard, I.B.; Reffat, M.; Hjortdal, J. Review of Corneal Biomechanical Properties Following LASIK and SMILE for Myopia and Myopic Astigmatism. Open Ophthalmol. J. 2018, 12, 164–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guell, J.L.; Verdaguer, P.; Mateu-Figueras, G.; Elies, D.; Gris, O.; El Husseiny, M.A.; Manero, F.; Morral, M. SMILE Procedures With Four Different Cap Thicknesses for the Correction of Myopia and Myopic Astigmatism. J. Refract. Surg. 2015, 31, 580–585. [Google Scholar] [CrossRef]
- Reinstein, D.Z.; Archer, T.J.; Randleman, J.B. Mathematical model to compare the relative tensile strength of the cornea after PRK, LASIK, and small incision lenticule extraction. J. Refract. Surg. 2013, 29, 454–460. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Hosseini-Moghaddam, S.M.; Hodge, W. Corneal biomechanical properties after SMILE versus FLEX, LASIK, LASEK, or PRK: A systematic review and meta-analysis. BMC Ophthalmol. 2019, 19, 167. [Google Scholar] [CrossRef] [Green Version]
- Jun, I.; Kang, D.S.Y.; Roberts, C.J.; Lee, H.; Jean, S.K.; Kim, E.K.; Seo, K.Y.; Kim, T.I. Comparison of Clinical and Biomechanical Outcomes of Small Incision Lenticule Extraction With 120-and 140-mu m Cap Thickness. Transl. Vis. Sci. Technol. 2021, 10, 15. [Google Scholar] [CrossRef]
- Eltony, A.M.; Shao, P.; Yun, S.-H. Measuring mechanical anisotropy of the cornea with Brillouin microscopy. Nat. Commun. 2022, 13, 1354. [Google Scholar] [CrossRef]
- Li, R.; Du, Z.; Qian, X.; Li, Y.; Martinez-Camarillo, J.-C.; Jiang, L.; Humayun, M.S.; Chen, Z.; Zhou, Q. High resolution optical coherence elastography of retina under prosthetic electrode. Quant. Imaging Med. Surg. 2021, 11, 918. [Google Scholar] [CrossRef]
- Qian, X.; Li, R.; Lu, G.; Jiang, L.; Kang, H.; Kirk Shung, K.; Humayun, M.S.; Zhou, Q. Ultrasonic elastography to assess biomechanical properties of the optic nerve head and peripapillary sclera of the eye. Ultrasonics 2021, 110, 106263. [Google Scholar] [CrossRef]
- Du, Z.; Li, R.; Qian, X.; Lu, G.; Li, Y.; He, Y.; Qu, Y.; Jiang, L.; Chen, Z.; Humayun, M.S.; et al. Quantitative confocal optical coherence elastography for evaluating biomechanics of optic nerve head using Lamb wave model. Neurophotonics 2019, 6, 041112. [Google Scholar] [CrossRef]
- Schmitt, J.M. OCT elastography: Imaging microscopic deformation and strain of tissue. Opt. Express 1998, 3, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Larin, K.V.; Sampson, D.D. Optical coherence elastography—OCT at work in tissue biomechanics [Invited]. Biomed. Opt. Express 2017, 8, 1172–1202. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.L.; Aglyamov, S.R.; Li, J.S.; Singh, M.; Wang, S.; Vantipalli, S.; Wu, C.; Liu, C.H.; Twa, M.D.; Larin, K.V. Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation. J. Biomed. Opt. 2015, 20, 20501. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Ma, T.; He, Y.; Zhu, J.; Dai, C.; Yu, M.; Huang, S.; Lu, F.; Shung, K.K.; Zhou, Q.; et al. Acoustic Radiation Force Optical Coherence Elastography of Corneal Tissue. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Twa, M.D.; Li, J.; Vantipalli, S.; Singh, M.; Aglyamov, S.; Emelianov, S.; Larin, K.V. Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking. Biomed. Opt. Express 2014, 5, 1419–1427. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Li, J.; Han, Z.; Wu, C.; Aglyamov, S.R.; Twa, M.D.; Larin, K.V. Investigating Elastic Anisotropy of the Porcine Cornea as a Function of Intraocular Pressure With Optical Coherence Elastography. J. Refract. Surg. 2016, 32, 562–567. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Han, Z.; Li, J.; Vantipalli, S.; Aglyamov, S.R.; Twa, M.D.; Larin, K.V. Quantifying the effects of hydration on corneal stiffness with noncontact optical coherence elastography. J. Cataract Refract. Surg. 2018, 44, 1023–1031. [Google Scholar] [CrossRef]
- Wang, S.; Larin, K.V. Noncontact depth-resolved micro-scale optical coherence elastography of the cornea. Biomed. Opt. Express 2014, 5, 3807–3821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Stefano, V.S.; Ford, M.R.; Seven, I.; Dupps, W.J., Jr. Live human assessment of depth-dependent corneal displacements with swept-source optical coherence elastography. PLoS ONE 2018, 13, e0209480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramier, A.; Eltony, A.M.; Chen, Y.; Clouser, F.; Birkenfeld, J.S.; Watts, A.; Yun, S.H. In vivo measurement of shear modulus of the human cornea using optical coherence elastography. Sci. Rep. 2020, 10, 17366. [Google Scholar] [CrossRef]
- Lan, G.; Gu, B.; Larin, K.V.; Twa, M.D. Clinical Corneal Optical Coherence Elastography Measurement Precision: Effect of Heartbeat and Respiration. Transl. Vis. Sci. Technol. 2020, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.Z.; Wang, Y.B.; Xu, Y.Y.; Zhang, Y.J.; Yang, H.W.; Han, X.; Zhu, Y.R.; Zhang, Y.B.; Huang, G.F. Quantification for biomechanical properties of human cornea by using acoustic radiation force optical coherence elastography. J. Mod. Opt. 2022, 69, 150–159. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Y.B.; Zhu, Y.R.; Zhao, Y.Z.; Yang, H.W.; Liu, G.; Ai, S.Z.; Wang, Y.D.; Xie, C.F.; Shi, J.L.; et al. Quantification of biomechanical properties of human corneal scar using acoustic radiation force optical coherence elastography. Exp. Biol. Med. 2022, 247, 462–469. [Google Scholar] [CrossRef]
- Zhu, J.; He, X.; Chen, Z. Acoustic radiation force optical coherence elastography for elasticity assessment of soft tissues. Appl. Spectrosc. Rev. 2019, 54, 457–481. [Google Scholar] [CrossRef]
- Nguyen, T.M.; Couade, M.; Bercoff, J.; Tanter, M. Assessment of Viscous and Elastic Properties of Sub-Wavelength Layered Soft Tissues Using Shear Wave Spectroscopy: Theoretical Framework and In Vitro Experimental Validation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2011, 58, 2305–2315. [Google Scholar] [CrossRef]
- Zhou, B.; Sit, A.J.; Zhang, X. Noninvasive measurement of wave speed of porcine cornea in ex vivo porcine eyes for various intraocular pressures. Ultrasonics 2017, 81, 86–92. [Google Scholar] [CrossRef]
- Li, Y.; Moon, S.; Chen, J.J.; Zhu, Z.; Chen, Z. Ultrahigh-sensitive optical coherence elastography. Light Sci. Appl. 2020, 9, 58. [Google Scholar] [CrossRef]
- Li, R.; Qian, X.; Gong, C.; Zhang, J.; Liu, Y.; Xu, B.; Humayun, M.S.; Zhou, Q. Simultaneous Assessment of the Whole Eye Biomechanics Using Ultrasonic Elastography. IEEE Trans. Biomed. Eng. 2022, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sinha Roy, A.; Dupps, W.J., Jr.; Roberts, C.J. Comparison of biomechanical effects of small-incision lenticule extraction and laser in situ keratomileusis: Finite-element analysis. J. Cataract Refract. Surg. 2014, 40, 971–980. [Google Scholar] [CrossRef]
- Seven, I.; Vahdati, A.; Pedersen, I.B.; Vestergaard, A.; Hjortdal, J.; Roberts, C.J.; Dupps, W.J., Jr. Contralateral Eye Comparison of SMILE and Flap-Based Corneal Refractive Surgery: Computational Analysis of Biomechanical Impact. J. Refract. Surg. 2017, 33, 444–453. [Google Scholar] [CrossRef]
- Winkler, M.; Chai, D.; Kriling, S.; Nien, C.J.; Brown, D.J.; Jester, B.; Juhasz, T.; Jester, J.V. Nonlinear optical macroscopic assessment of 3-D corneal collagen organization and axial biomechanics. Invest. Ophthalmol. Vis. Sci. 2011, 52, 8818–8827. [Google Scholar] [CrossRef]
- Damgaard, I.B.; Ivarsen, A.; Hjortdal, J. Refractive Correction and Biomechanical Strength Following SMILE With a 110- or 160-mum Cap Thickness, Evaluated Ex Vivo by Inflation Test. Invest. Ophthalmol. Vis. Sci. 2018, 59, 1836–1843. [Google Scholar] [CrossRef] [Green Version]
- Sinha Roy, A.; Dupps, W.; Roberts, C. Comparison of Biomechanical Effects of Small Incision Lenticule Extraction (SMILE) and Laser in situ Keratomileusis (LASIK): A Finite Element Analysis Study. Invest. Ophthalmol. Vis. Sci. 2013, 54, 1633. [Google Scholar]
- Randleman, J.B.; Su, J.P.; Scarcelli, G. Biomechanical Changes After LASIK Flap Creation Combined With Rapid Cross-Linking Measured With Brillouin Microscopy. J. Refract. Surg. 2017, 33, 408–414. [Google Scholar] [CrossRef] [Green Version]
- Asroui, L.; Zhang, H.; Scarcelli, G.; Randleman, J.B. Comparison of Brillouin Shifts Between Keratoconus, Post-LASIK, and Normal Control Corneas. Investig. Ophthalmol. Vis. Sci. 2022, 63, 2398-A0201. [Google Scholar]
- Randleman, J.B.; Scarcelli, G. Biomechanical changes associated with LASIK flap creation and rapid cross-linking measured with Brillouin microscopy. Investig. Ophthalmol. Vis. Sci. 2017, 58, 5267. [Google Scholar]
- Scarcelli, G.; Pineda, R.; Yun, S.H. Brillouin optical microscopy for corneal biomechanics. Invest. Ophthalmol. Vis. Sci. 2012, 53, 185–190. [Google Scholar] [CrossRef]
- Roy, A.S.; Dupps, W.J. Patient-Specific Computational Modeling of Keratoconus Progression and Differential Responses to Collagen Cross-linking. Invest. Ophthalmol. Vis. Sci. 2011, 52, 9174–9187. [Google Scholar] [CrossRef]
- Gefen, A.; Shalom, R.; Elad, D.; Mandel, Y. Biomechanical analysis of the keratoconic cornea. J. Mech. Behav. Biomed. 2009, 2, 224–236. [Google Scholar] [CrossRef]
- Spiru, B.; Kling, S.; Hafezi, F.; Sekundo, W. Biomechanical Properties of Human Cornea Tested by Two-Dimensional Extensiometry Ex Vivo in Fellow Eyes: Femtosecond Laser-Assisted LASIK Versus SMILE. J. Refract. Surg. 2018, 34, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.G.; Son, T.; Crutison, J.; Guaiquil, V.; Lin, S.; Nammari, L.; Klatt, D.; Yao, X.; Rosenblatt, M.I.; Royston, T.J. Optical coherence elastography for assessing the influence of intraocular pressure on elastic wave dispersion in the cornea. J. Mech. Behav. Biomed. Mater. 2022, 128, 105100. [Google Scholar] [CrossRef] [PubMed]
- Bryant, M.R.; Szerenyi, K.; Schmotzer, H.; Mcdonnell, P.J. Corneal Tensile-Strength in Fully Healed Radial Keratotomy Wounds. Invest. Ophthalmol. Vis. Sci. 1994, 35, 3022–3031. [Google Scholar]
- Elsheikh, A.; Alhasso, D.; Rama, P. Biomechanical properties of human and porcine corneas. Exp. Eye Res. 2008, 86, 783–790. [Google Scholar] [CrossRef]
- Pitre, J.J.; Kirby, M.A.; Li, D.S.; Shen, T.T.; Wang, R.K.; O’Donnell, M.; Pelivanov, I. Nearly-incompressible transverse isotropy (NITI) of cornea elasticity: Model and experiments with acoustic micro-tapping OCE. Sci. Rep. 2020, 10, 12983. [Google Scholar] [CrossRef]
- Bohac, M.; Koncarevic, M.; Pasalic, A.; Biscevic, A.; Merlak, M.; Gabric, N.; Patel, S. Incidence and Clinical Characteristics of Post LASIK Ectasia: A Review of over 30,000 LASIK Cases. Semin. Ophthalmol. 2018, 33, 869–877. [Google Scholar] [CrossRef]
Data (Mean ± SD) | SMILE (n = 6) | FLEX (n = 6) |
---|---|---|
CCT (Pre-), µm | 344 ± 4.6 | 347 ± 10 |
CCT (Post-), µm | 238 ± 7.1 | 238 ± 9.4 |
p-value | 4.4985 × 10−9 | 1.3300 × 10−9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhu, Y.; Wang, Y.; Yang, H.; He, X.; Alvarez-Arenas, T.G.; Li, Y.; Huang, G. Quantitative Evaluation of In Vivo Corneal Biomechanical Properties after SMILE and FLEx Surgery by Acoustic Radiation Force Optical Coherence Elastography. Sensors 2023, 23, 181. https://doi.org/10.3390/s23010181
Zhao Y, Zhu Y, Wang Y, Yang H, He X, Alvarez-Arenas TG, Li Y, Huang G. Quantitative Evaluation of In Vivo Corneal Biomechanical Properties after SMILE and FLEx Surgery by Acoustic Radiation Force Optical Coherence Elastography. Sensors. 2023; 23(1):181. https://doi.org/10.3390/s23010181
Chicago/Turabian StyleZhao, Yanzhi, Yirui Zhu, Yongbo Wang, Hongwei Yang, Xingdao He, Tomas Gomez Alvarez-Arenas, Yingjie Li, and Guofu Huang. 2023. "Quantitative Evaluation of In Vivo Corneal Biomechanical Properties after SMILE and FLEx Surgery by Acoustic Radiation Force Optical Coherence Elastography" Sensors 23, no. 1: 181. https://doi.org/10.3390/s23010181
APA StyleZhao, Y., Zhu, Y., Wang, Y., Yang, H., He, X., Alvarez-Arenas, T. G., Li, Y., & Huang, G. (2023). Quantitative Evaluation of In Vivo Corneal Biomechanical Properties after SMILE and FLEx Surgery by Acoustic Radiation Force Optical Coherence Elastography. Sensors, 23(1), 181. https://doi.org/10.3390/s23010181