Equipment Identification and Localization Method Based on Improved YOLOv5s Model for Production Line
<p>The pixel coordinate system and the camera coordinate system.</p> "> Figure 2
<p>Implementation process of CA attention module.</p> "> Figure 3
<p>Structure of GSConv and VoV-GSCSP modules.</p> "> Figure 4
<p>Structure of Decoupled Head.</p> "> Figure 5
<p>Network structure of production line equipment identification and localization method based on improved YOLOv5s model.</p> "> Figure 6
<p>The dataset labeling process.</p> "> Figure 7
<p>Parameters generated during dataset labeling.</p> "> Figure 8
<p>Model metrics judgment.</p> "> Figure 9
<p>Comparison of performance parameters of YOLOv3, YOLOv5-6.0, YOLOv5-5.0, YOLOv5-Lite, and improved method iteration process.</p> "> Figure 10
<p>Comparison of the P–R curve of the improved model and the original model of YOLOv5-6.0.</p> "> Figure 10 Cont.
<p>Comparison of the P–R curve of the improved model and the original model of YOLOv5-6.0.</p> "> Figure 11
<p>Representative images showing the training process of the improved method.</p> "> Figure 11 Cont.
<p>Representative images showing the training process of the improved method.</p> "> Figure 12
<p>Precision rate of YOLOv5-6.0, YOLOv5-5.0, YOLOv5-Lite, and improved method model weights.</p> "> Figure 13
<p>Comparison of recognition test results between YOLOv5-5.0 and the improved method.</p> "> Figure 14
<p>Comparison of recognition test results between YOLOv5-6.0 and the improved method.</p> "> Figure 15
<p>Comparison of recognition test results of YOLOv3 and the improved method.</p> "> Figure 16
<p>Comparison of recognition test results between YOLOv5-Lite and the improved method.</p> "> Figure 17
<p>FPS test results of the improved method.</p> ">
Abstract
:1. Introduction
2. Improvement of YOLOv5 Model
2.1. The YOLOv5 Model
2.2. Improvement Strategies for the YOLOv5 Model
2.2.1. Adding CA (Coordinate Attention) Attention Module
2.2.2. Introducing GSConv and Slim-Neck Methods in the Neck Layer
2.2.3. Detect Layer Adds Decoupled Head Structure
2.3. A Framework of Production Line Equipment Identification and Localization Method Based on Improved YOLOv5s Model
3. Production Line Equipment Identification Experiment
3.1. Build the Experimental Platform
3.2. Making the ProductionIineData Dataset
3.3. Evaluation of the Model’s Performance Indicators
4. Experimental Results of Identification of Production Line Equipment
4.1. Experimental Analysis of Equipment Identification in the Production Line
4.2. Performance Comparison
4.2.1. Performance Comparison Using ProductionlineData Homemade Dataset
4.2.2. Performance Comparison Using Pascal VOC2007 Public Dataset
4.2.3. Comparison of Simulated Production Line Scene Recognition Test Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maddikunta, P.K.R.; Pham, Q.-V.; Prabadevi, B.; Deepa, N.; Dev, K.; Gadekallu, T.R.; Ruby, R.; Liyanage, M. Industry 5.0: A survey on enabling technologies and potential applications. J. Ind. Inf. Integr. 2022, 26, 100257. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Zhang, L.; Liu, Y.K.; Luo, X. Proof of service power: A blockchain consensus for cloud manufacturing. J. Manuf. Syst. 2021, 59, 1–11. [Google Scholar] [CrossRef]
- Alvarez-Aros, E.L.; Bernal-Torres, C.A. Technological competitiveness and emerging technologies in industry 4.0 and industry 5.0. An. Acad. Bras. Ciências 2021, 93, e20191290. [Google Scholar] [CrossRef] [PubMed]
- Laura, L.; Jaroslava, K. Industry 4.0 Implementation and Industry 5.0 Readiness in Industrial Enterprises. Manag. Prod. Eng. Rev. 2022, 13, 102–109. [Google Scholar] [CrossRef]
- Jafari, N.; Azarian, M.; Yu, H. Moving from Industry 4.0 to Industry 5.0: What Are the Implications for Smart Logistics. Logistics 2022, 6, 26. [Google Scholar] [CrossRef]
- Wang, D.; Hu, X.M.; Wang, Y.B.; Yu, T. Data Management Research of Digital Workshop Monitoring System. Adv. Mater. Res. 2014, 3481, 637–641. [Google Scholar] [CrossRef]
- Liu, C.; Liu, L.L.; Yuan, Z.L.; Liu, X.W. Study on the Workshop Production Environment Remote Monitoring System. Adv. Mater. Res. 2014, 3481, 469–475. [Google Scholar] [CrossRef]
- Park, S.; Park, S.; Byun, J.; Park, S. Design of a mass-customization-based cost-effective Internet of Things sensor system in smart building spaces. Int. J. Distrib. Sens. Netw. 2016, 12, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.F.; Wang, X.; Yang, Y.N. Design of RFID Production Line Visual Monitoring System. In Proceedings of the 2014 International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC 2014), Shenyang, China, 15–17 November 2014; pp. 152–155. [Google Scholar]
- Zulkifli, C.Z.; Hassan, H.N.; Ismail, W.; Semunab, S.N. Embedded RFID and Wireless Mesh Sensor Network Materializing Automated Production Line Monitoring. Acta Phys. Pol. A 2015, 128, 86–89. [Google Scholar] [CrossRef]
- Poad, F.A.; Ismail, W. An Active Integrated Zigbee RFID System with GPS Functionalities for Location Monitoring Utilizing Wireless Sensor Network and GSM Communication Platform. In Transactions on Engineering Technologies; Yang, G.C., Ao, S.I., Gelman, L., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 495–506. [Google Scholar]
- Velandia, D.M.S.; Kaur, N.; Whittow, W.G.; Conway, P.P.; West, A.A. Towards industrial internet of things: Crankshaft monitoring, traceability, and tracking using RFID. Robot. Comput. Integr. Manuf. 2016, 41, 66–77. [Google Scholar] [CrossRef]
- Liu, K.; Bi, Y.R.; Liu, D. Internet of Things based acquisition system of industrial intelligent bar code for smart city applications. Comput. Commun. 2020, 150, 325–333. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. arXiv 2016, arXiv:1512.02325. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, (CVPR 2014), Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Ren, S.Q.; He, K.M.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934v1. [Google Scholar]
- Zhang, N.; Liu, Y.; Zou, L.; Zhao, H.; Dong, W.; Zhou, H.; Huang, M. Automatic Recognition of Oil Industry Facilities Based on Deep Learning. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 2519–2522. [Google Scholar]
- Huang, R.; Gu, J.; Sun, X.; Hou, Y.; Uddin, S. A Rapid Recognition Method for Electronic Components Based on the Improved YOLO-V3 Network. Electronics 2019, 8, 825. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Li, Q. Machine Vision Inspection of Electrical Connectors Based on Improved YOLO v3. IEEE Access 2020, 8, 166184–166196. [Google Scholar] [CrossRef]
- Song, Q.; Li, S.; Bai, Q.; Yang, J.; Zhang, X.; Li, Z.; Duan, Z. Object Detection Method for Grasping Robot Based on Improved YOLOv5. Micromachines 2021, 12, 1273. [Google Scholar] [CrossRef]
- Gao, M.; Cai, Q.; Zheng, B.; Shi, J.; Ni, Z.; Wang, J.; Lin, H. A Hybrid YOLOv4 and Particle Filter Based Robotic Arm Grabbing System in Nonlinear and Non-Gaussian Environment. Electronics 2021, 10, 1140. [Google Scholar] [CrossRef]
- Yan, J.H.; Wang, Z.P. YOLOV3+VGG16-based automatic operations monitoring and analysis in a manufacturing workshop under Industry 4.0. J. Manuf. Syst. 2022, 63, 134–142. [Google Scholar] [CrossRef]
- Yu, L.; Zhu, J.; Zhao, Q.; Wang, Z. An Efficient YOLO Algorithm with an Attention Mechanism for Vision-Based Defect Inspection Deployed on FPGA. Micromachines 2022, 13, 1058. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.P.; Yu, T.; Zheng, J.; Ding, Y. Design of engineering drawing recognition system based on YOLO V4. In Proceedings of the 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 4–6 March 2022; pp. 1221–1225. [Google Scholar]
- Ge, Y.H.; Lin, S.; Zhang, Y.H.; Li, Z.L.; Cheng, H.T.; Dong, J.; Shao, S.S.; Zhang, J.; Qi, X.Y.; Wu, Z.D. Tracking and Counting of Tomato at Different Growth Periods Using an Improving YOLO-Deepsort Network for Inspection Robot. Machines 2022, 10, 489. [Google Scholar] [CrossRef]
- Huang, H.; Luo, X. A Holistic Approach to IGBT Board Surface Fractal Object Detection Based on the Multi-Head Model. Machines 2022, 10, 713. [Google Scholar] [CrossRef]
- Yang, D.; Su, C.; Wu, H.; Xu, X.; Zhao, X. Research of target detection and distance measurement technology based on YOLOv5 and depth camera. In Proceedings of the 2022 4th International Conference on Communications, Information System and Computer Engineering (CISCE), Shenzhen, China, 27–29 May 2022; pp. 346–349. [Google Scholar]
- Zou, P.; Zhang, J. Intelligent Helmet Detection System based on the Improved YOLOv5. In Proceedings of the 2022 5th International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 27–30 May 2022; pp. 310–314. [Google Scholar]
- Soma, S.; Waddenkery, N. Machine-Learning Object Detection and Recognition for Surveillance System using YOLOV3. In Proceedings of the 2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT), Trichy, India, 16–18 February 2022; pp. 1–5. [Google Scholar]
- Chen, G.; Cui, G.; Jin, Z.; Wu, F.; Chen, X. Accurate intrinsic and extrinsic calibration of RGB-D cameras with GP-based depth correction. IEEE Sens. J. 2018, 19, 2685–2694. [Google Scholar] [CrossRef]
- Oliveira, M.; Castro, A.; Madeira, T.; Pedrosa, E.; Dias, P.; Santos, V. A ROS framework for the extrinsic calibration of intelligent vehicles: A multi-sensor, multi-modal approach. Robot. Auton. Syst. 2020, 131, 1–12. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision (ECCV), Salt Lake City, UT, USA, 18–22 June 2018; pp. 3–19. [Google Scholar]
- Hou, Q.B.; Zhou, D.Q.; Feng, J.S. Coordinate Attention for Efficient Mobile Network Design. arXiv 2021, arXiv:2103.02907. [Google Scholar]
- Cui, J.L.; Zhong, Q.W.; Zheng, S.B.; Peng, L.L.; Wen, J. A Lightweight Model for Bearing Fault Diagnosis Based on Gramian Angular Field and Coordinate Attention. Machines 2022, 10, 282. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Wang, Z.W. Concrete Surface Crack Recognition Based on Coordinate Attention Neural Networks. Comput. Intell. Neurosci. 2022, 2022, 7454746. [Google Scholar] [CrossRef]
- Cheng, Z.; Huang, R.; Qian, R.; Dong, W.; Zhu, J.; Liu, M. A Lightweight Crop Pest Detection Method Based on Convolutional Neural Networks. Appl. Sci. 2022, 12, 7378. [Google Scholar] [CrossRef]
- Wang, Z.K.; Cao, Y.; Yu, H.F.; Sun, C.H.; Chen, X.J.; Jin, Z.G.; Kong, W.L. Scene Classification of Remote Sensing Images Using EfficientNetV2 with Coordinate Attention. J. Phys. Conf. Ser. 2022, 2289, 012026. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Wei, H.; Liu, Z.; Zhan, Z.; Ren, Q. Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles. arXiv 2022, arXiv:2206.02424. [Google Scholar]
- Song, G.; Liu, Y.; Wang, X. Revisiting the sibling head in object detector. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, DC, USA, 16–20 June 2020; pp. 11563–11572. [Google Scholar]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Li, Q.; Xiao, D.; Shi, F. A Decoupled Head and Coordinate Attention Detection Method for Ship Targets in SAR Images. IEEE Access 2022. [Google Scholar] [CrossRef]
- López, J.; Zalama, E.; Gómez-García-Bermejo, J. A simulation and control framework for AGV based transport systems. Simul. Model. Pract. Theory 2022, 116, 102430. [Google Scholar] [CrossRef]
- Stączek, P.; Pizoń, J.; Danilczuk, W.; Gola, A. A Digital Twin Approach for the Improvement of an Autonomous Mobile Robots (AMR’s) Operating Environment—A Case Study. Sensors 2021, 21, 7830. [Google Scholar] [CrossRef] [PubMed]
Name of Development Environment | Configuration Versions |
---|---|
Ubuntu | 20.04 |
Cuda | 11.3 |
python | 3.8 |
Numpy | 1.21.6 |
Opencv | 4.1.2 |
PyTorch | 1.10.0 |
Precision | Recall | mAP_0.5 | mAP_0.5:0.95 |
---|---|---|---|
0.887 | 0.807 | 0.885 | 0.607 |
Attention Mechanism | Precision | Recall | [email protected] | [email protected]:0.95 |
---|---|---|---|---|
Add CA | 0.928 | 0.832 | 0.886 | 0.592 |
Add SE | 0.923 | 0.828 | 0.883 | 0.578 |
Add CBAM | 0.915 | 0.837 | 0.873 | 0.582 |
Add ECA | 0.868 | 0.798 | 0.862 | 0.525 |
Attention Mechanism | Precision | Recall | [email protected] | [email protected]:0.95 |
---|---|---|---|---|
Add CA | 0.868 | 0.811 | 0.872 | 0.543 |
Add SE | 0.921 | 0.824 | 0.816 | 0.571 |
Add CBAM | 0.886 | 0.795 | 0.83 | 0.537 |
Add ECA | 0.884 | 0.843 | 0.878 | 0.541 |
Model | Precision | Recall | [email protected] | [email protected]:0.95 |
---|---|---|---|---|
YOLOv5-6.0 | 0.887 | 0.807 | 0.885 | 0.607 |
Add CA | 0.928 | 0.832 | 0.886 | 0.592 |
Add CA + GSCONV + Slim Neck | 0.945 | 0.828 | 0.885 | 0.593 |
Model | Precision | Recall | [email protected] | [email protected]:0.95 |
---|---|---|---|---|
YOLOv5-6.0 | 0.887 | 0.807 | 0.885 | 0.607 |
Add CA | 0.928 | 0.832 | 0.886 | 0.592 |
Add CA + GSCONV + Slim Neck | 0.945 | 0.828 | 0.885 | 0.593 |
Decoupled Head + CA + GSCONV + Slim Neck | 0.936 | 0.856 | 0.918 | 0.585 |
Model | Weights | Precision | Recall | [email protected] | [email protected]:0.95 |
---|---|---|---|---|---|
YOLOv3 | 117 MB | 0.896 | 0.768 | 0.832 | 0.521 |
YOLOv5-6.0 | 13.7 MB | 0.887 | 0.807 | 0.885 | 0.607 |
YOLOv5-5.0 | 14.4 MB | 0.899 | 0.839 | 0.829 | 0.569 |
YOLOv5-Lite | 3.4 MB | 0.881 | 0.824 | 0.878 | 0.566 |
Improved method | 28.7 MB | 0.936 | 0.856 | 0.918 | 0.585 |
Model | Precision | Recall | [email protected] | [email protected]:0.95 |
---|---|---|---|---|
YOLOv5-6.0 | 0.738 | 0.622 | 0.689 | 0.457 |
YOLOv5-5.0 | 0.737 | 0.61 | 0.653 | 0.42 |
YOLOv5-Lite | 0.727 | 0.628 | 0.689 | 0.425 |
Improved method | 0.792 | 0.595 | 0.668 | 0.441 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Wan, Q.; Tian, S.; Hou, Y.; Wang, Y.; Zhao, J. Equipment Identification and Localization Method Based on Improved YOLOv5s Model for Production Line. Sensors 2022, 22, 10011. https://doi.org/10.3390/s222410011
Yu M, Wan Q, Tian S, Hou Y, Wang Y, Zhao J. Equipment Identification and Localization Method Based on Improved YOLOv5s Model for Production Line. Sensors. 2022; 22(24):10011. https://doi.org/10.3390/s222410011
Chicago/Turabian StyleYu, Ming, Qian Wan, Songling Tian, Yanyan Hou, Yimiao Wang, and Jian Zhao. 2022. "Equipment Identification and Localization Method Based on Improved YOLOv5s Model for Production Line" Sensors 22, no. 24: 10011. https://doi.org/10.3390/s222410011
APA StyleYu, M., Wan, Q., Tian, S., Hou, Y., Wang, Y., & Zhao, J. (2022). Equipment Identification and Localization Method Based on Improved YOLOv5s Model for Production Line. Sensors, 22(24), 10011. https://doi.org/10.3390/s222410011