USV-Observed Turbulent Heat Flux Induced by Late Spring Cold Dry Air Incursion over Sub-Mesoscale Warm Regions off Sanriku, Japan
<p>(<b>a</b>) Schematic diagram of the subtropical (red arrow lines) and subpolar (blue arrow lines) surface currents in the western North Pacific. The experiment region enclosed by the square is depicted by the enlarged map in panel (<b>b</b>). (<b>b</b>) Wave Glider (WG) track (black line) and passage dates. The directions of the WG are illustrated by arrows. (<b>c</b>) The observing WG immediately after the deployment on 11 May 2022.</p> "> Figure 2
<p>(<b>a</b>) Diagram of a Wave Glider SV3. Images of (<b>b</b>) the HOBO data logger on the middle mast of the WG and (<b>c</b>) the CTD JES10mini under the tail of the WG float. The HOBO sensor in panel (<b>b</b>) is covered by beige Gore-Tex fabric.</p> "> Figure 3
<p>Scatter plot of observed temperature values by Weather Station sensor (<math display="inline"><semantics> <msub> <mi>T</mi> <mi>WS</mi> </msub> </semantics></math>) versus those by HOBO sensor (<math display="inline"><semantics> <msub> <mi>T</mi> <mi>HOBO</mi> </msub> </semantics></math>). Their correlation coefficient is <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0.94</mn> </mrow> </semantics></math>. The linear regression equation (<math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>HOBO</mi> </msub> <mo>=</mo> <mn>0.77</mn> <mspace width="0.166667em"/> <msub> <mi>T</mi> <mi>WS</mi> </msub> <mo>−</mo> <mn>0.61</mn> </mrow> </semantics></math>) is indicated by the slanted line.</p> "> Figure 4
<p>Time series of (<b>a</b>) SST (<math display="inline"><semantics> <msup> <mrow/> <mo>°</mo> </msup> </semantics></math>C), (<b>b</b>) air temperature (<math display="inline"><semantics> <msup> <mrow/> <mo>°</mo> </msup> </semantics></math>C), (<b>c</b>) specific humidity (<math display="inline"><semantics> <mrow> <mi mathvariant="normal">g</mi> <mspace width="0.166667em"/> <msup> <mi>kg</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>), and (<b>d</b>) wind velocity vector (<math display="inline"><semantics> <mrow> <mi mathvariant="normal">m</mi> <mspace width="0.166667em"/> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>). The abscissa is local time (<math display="inline"><semantics> <mrow> <mi>UTC</mi> <mo>+</mo> <mn>9</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">h</mi> </mrow> </semantics></math>) during the observation period from 11 May to 5 July 2022.</p> "> Figure 4 Cont.
<p>Time series of (<b>a</b>) SST (<math display="inline"><semantics> <msup> <mrow/> <mo>°</mo> </msup> </semantics></math>C), (<b>b</b>) air temperature (<math display="inline"><semantics> <msup> <mrow/> <mo>°</mo> </msup> </semantics></math>C), (<b>c</b>) specific humidity (<math display="inline"><semantics> <mrow> <mi mathvariant="normal">g</mi> <mspace width="0.166667em"/> <msup> <mi>kg</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>), and (<b>d</b>) wind velocity vector (<math display="inline"><semantics> <mrow> <mi mathvariant="normal">m</mi> <mspace width="0.166667em"/> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>). The abscissa is local time (<math display="inline"><semantics> <mrow> <mi>UTC</mi> <mo>+</mo> <mn>9</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">h</mi> </mrow> </semantics></math>) during the observation period from 11 May to 5 July 2022.</p> "> Figure 5
<p>Time series of latent (red line) and sensible (blue line) sea surface heat fluxes (<math display="inline"><semantics> <mrow> <mi mathvariant="normal">W</mi> <mspace width="0.166667em"/> <msup> <mi mathvariant="normal">m</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math>) along the WG track. The abscissa is local time (<math display="inline"><semantics> <mrow> <mi>UTC</mi> <mo>+</mo> <mn>9</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">h</mi> </mrow> </semantics></math>) during the observation period from 11 May to 5 July 2022. Cyan and yellow bands marked by letters a–e indicate periods during which heat fluxes are shown in <a href="#sensors-22-09695-f006" class="html-fig">Figure 6</a>.</p> "> Figure 6
<p>The Wave Glider tracks during the period shown by letters a–e in <a href="#sensors-22-09695-f005" class="html-fig">Figure 5</a>, which correspond to panel letters of this figure. Values of turbulent (latent plus sensible) heat flux (<math display="inline"><semantics> <mrow> <mi mathvariant="normal">W</mi> <mspace width="0.166667em"/> <msup> <mi mathvariant="normal">m</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math>) are shown by colors of the WG tracks. Maps of SST (<math display="inline"><semantics> <msup> <mrow/> <mo>°</mo> </msup> </semantics></math>C) are satellite-observed values on (<b>a</b>) 13 May, (<b>b</b>) 25 May, (<b>c</b>) 7 June, (<b>d</b>) 15 June, and (<b>e</b>) 22 June 2022. The contour intervals of SST are 1 <math display="inline"><semantics> <msup> <mrow/> <mo>°</mo> </msup> </semantics></math>C.</p> "> Figure 7
<p>Time series of SSS (red line) in practical salinity scale along the WG track. The abscissa is local time (<math display="inline"><semantics> <mrow> <mi>UTC</mi> <mo>+</mo> <mn>9</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">h</mi> </mrow> </semantics></math>) during the observation period from 11 May to 5 July 2022. For comparison, SST (<math display="inline"><semantics> <msup> <mrow/> <mo>°</mo> </msup> </semantics></math>C) time series is shown by blue line.</p> "> Figure 8
<p>(<b>a</b>) LHF and (<b>b</b>) SHF variation components (<math display="inline"><semantics> <mrow> <mi mathvariant="normal">W</mi> <mspace width="0.166667em"/> <msup> <mi mathvariant="normal">m</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math>) in Equation (<a href="#FD1-sensors-22-09695" class="html-disp-formula">1</a>). The components of SST, air temperature, specific humidity, and wind speed are shown by magenta, green, cyan, and orange lines, respectively. Because SHF is independent of specific humidity, the SHF variation due to specific humidity is not plotted in panel (<b>b</b>). The abscissa is local time (<math display="inline"><semantics> <mrow> <mi>UTC</mi> <mo>+</mo> <mn>9</mn> <mspace width="0.166667em"/> <mi>hr</mi> </mrow> </semantics></math>) during the observation period from 11 May to 5 July 2022.</p> "> Figure 9
<p>Maps of sea-level pressure (hPa) on (<b>a</b>) 24 May, 15:00, (<b>b</b>) 7 June, 21:00, (<b>c</b>) 13 June, 21:00, and (<b>d</b>) 23 June, 03:00, 2022 around the positive peaks of the turbulent (latent plus sensible) heat flux. The contour intervals of sea-level pressure are 2 hPa. The WG tracks around the heat flux peak periods are shown by lines colored by values of heat flux (<math display="inline"><semantics> <mrow> <mi mathvariant="normal">W</mi> <mspace width="0.166667em"/> <msup> <mi mathvariant="normal">m</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math>).</p> ">
Abstract
:1. Introduction
2. Observation and Data
3. Results and Discussion
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CTD | Conductivity-temperature-depth |
AP | Air pressure |
AT | Air temperature |
FSR | Full-scale range |
GNSS | Global navigation satellite system |
JRA-55 | Japanese 55-year Reanalysis |
JST | Japanese standard time |
KE | Kuroshio Extension |
LHF | Latent heat flux |
NOAA | National Oceanic and Atmospheric Administration |
OI | Optimal interpolation |
RH | Relative humidity |
R/V | Research vessel |
SH | Specific humidity |
SHF | Sensible heat flux |
SSS | Sea surface salinity |
SST | Sea surface temperature |
USV | Unmanned surface vehicle |
WCR | Warm-core ring |
WG | Wave Glider |
References
- Bryden, H.; Imawaki, S. Ocean heat transport. In Ocean Circulation and Climate: Observing and Modeling the Global Ocean; Siedler, H., Church, J., Gould, J., Eds.; Academic Press: London, UK, 2001; pp. 455–474. [Google Scholar]
- Nagano, A.; Ichikawa, K.; Ichikawa, H.; Konda, M.; Murakami, K. Synoptic flow structures in the confluence region of the Kuroshio and the Ryukyu Current. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Nagano, A.; Ichikawa, K.; Ichikawa, H.; Tomita, H.; Tokinaga, H.; Konda, M. Stable volume and heat transports of the North Pacific subtropical gyre revealed by identifying the Kuroshio in synoptic hydrography south of Japan. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Nitani, H. Beginning of the Kuroshio. In Kuroshio-Its Physical Aspects; Stommel, H., Yoshida, K., Eds.; University of Tokyo Press: Tokyo, Japan, 1972; pp. 129–163. [Google Scholar]
- Konda, M.; Ichikawa, H.; Tomita, H.; Cronin, M.F. Surface heat flux variations across the Kuroshio Extension as observed by surface flux buoys. J. Clim. 2010, 23, 5206–5221. [Google Scholar] [CrossRef] [Green Version]
- Nagano, A.; Ando, K. Saildrone-observed atmospheric boundary layer response to winter mesoscale warm spot along the Kuroshio south of Japan. Prog. Earth Planet. Sci. 2020, 7, 43. [Google Scholar] [CrossRef]
- Kawai, H. Hydrography of the Kuroshio Extension. In Kuroshio-Its Physical Aspects; Stommel, H., Yoshida, K., Eds.; University of Tokyo Press: Tokyo, Japan, 1972; pp. 235–352. [Google Scholar]
- Tomita, H.; Hihara, T.; Kako, S.; Kubota, M.; Kutsuwada, K. An introduction to J-OFURO3, a third-generation Japanese ocean flux data set using remote-sensing observations. J. Oceanogr. 2019, 75, 171–194. [Google Scholar] [CrossRef] [Green Version]
- Manley, J.E. Unmanned surface vehicles, 15 years of development. In Proceedings of the OCEANS 2008, Quebec City, QC, Canada, 15–18 September 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Nagano, A.; Geng, B.; Richards, K.J.; Cronin, M.F.; Taniguchi, K.; Katsumata, M.; Ueki, I. Coupled atmosphere-ocean variations on timescales of days observed in the western tropical Pacific warm pool during mid-March 2020. J. Geophys. Res. 2022, 127, e2022JC019032. [Google Scholar] [CrossRef]
- Kondo, J. Air-sea bulk transfer coefficients in diabatic conditions. Boundary-Layer Meteorol. 1975, 9, 91–112. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk Parameterization of Air–sea Fluxes: Updates and Verification for the COARE Algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Iinuma, T.; Kido, M.; Ohta, Y.; Fukuda, T.; Tomita, F.; Ueki, I. GNSS-acoustic Observations of Seafloor Crustal Deformation Using a Wave Glider. Front. Earth Sci. 2021, 9, 600946. [Google Scholar] [CrossRef]
- Hine, R.; Wilcox, S.; Hine, G.; Richardson, T. The Wave Glider: A Wave-powered Autonomous Marine Vehicle. In Proceedings of the MTS/IEEE OCEANS 2009, Biloxi, MI, USA, 26–29 October 2009; pp. 1–6. [Google Scholar] [CrossRef]
- Grare, L.; Statom, N.M.; Pizzo, N.; Lenain, L. Instrumented Wave Gliders for Air-sea Interaction and Upper Ocean Research. Front. Mar. Sci. 2021, 8, 664728. [Google Scholar] [CrossRef]
- Gibson, P.; Rivin, D.; Berezin, A.; Nadezhdinskii, A. Measurement of Water Vapor Diffusion Through Laminated Fabrics and Membranes Using a Diode Laser Spectroscope; Technical Report NATICK/IR-98/025; U.S. Army Natock Research Development and Engineering Center: Natick, MA, USA, 1998. [Google Scholar]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 Reanalysis: General Specifications and Basic Characteristics. J. Meteor. Soc. Jpn. 2015, 93, 5–48. [Google Scholar] [CrossRef] [Green Version]
- Tomita, T.; Yamaura, T.; Hashimoto, T. Interannual Variability of the Baiu Season near Japan Evaluated from the Equivalent Potential Temperature. J. Meteor. Soc. Jpn. 2011, 89, 517–537. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, T.; Nagano, A.; Matsumoto, H.; Ariyoshi, K.; Wakita, M. El Niño-related sea surface elevation and ocean bottom pressure enhancement associated with the retreat of the Oyashio southeast of Hokkaido, Japan. Mar. Geophys. Res. 2019, 40, 505–512. [Google Scholar] [CrossRef]
Measurement | Model | Manufacturer | Accuracy | Resolution |
---|---|---|---|---|
Wind Speed | 200WX | AIRMAR | % | |
Wind Direction | Weather | Technology | ||
Air Pressure | Station | hPa | hPa | |
Air Temperature | ||||
Air Temperature | HOBO U23 | Onset | ||
Relative Humidity | Pro v2 | Computer | % | % |
Data Logger | ||||
Water Temperature | JES10mini | Offshore | ||
Conductivity | Technologies | |||
Water Pressure | % FSR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagano, A.; Hasegawa, T.; Ariyoshi, K.; Iinuma, T.; Fukuda, T.; Fujii, N.; Tomita, F.; Hino, R. USV-Observed Turbulent Heat Flux Induced by Late Spring Cold Dry Air Incursion over Sub-Mesoscale Warm Regions off Sanriku, Japan. Sensors 2022, 22, 9695. https://doi.org/10.3390/s22249695
Nagano A, Hasegawa T, Ariyoshi K, Iinuma T, Fukuda T, Fujii N, Tomita F, Hino R. USV-Observed Turbulent Heat Flux Induced by Late Spring Cold Dry Air Incursion over Sub-Mesoscale Warm Regions off Sanriku, Japan. Sensors. 2022; 22(24):9695. https://doi.org/10.3390/s22249695
Chicago/Turabian StyleNagano, Akira, Takuya Hasegawa, Keisuke Ariyoshi, Takeshi Iinuma, Tatsuya Fukuda, Nobuhiro Fujii, Fumiaki Tomita, and Ryota Hino. 2022. "USV-Observed Turbulent Heat Flux Induced by Late Spring Cold Dry Air Incursion over Sub-Mesoscale Warm Regions off Sanriku, Japan" Sensors 22, no. 24: 9695. https://doi.org/10.3390/s22249695
APA StyleNagano, A., Hasegawa, T., Ariyoshi, K., Iinuma, T., Fukuda, T., Fujii, N., Tomita, F., & Hino, R. (2022). USV-Observed Turbulent Heat Flux Induced by Late Spring Cold Dry Air Incursion over Sub-Mesoscale Warm Regions off Sanriku, Japan. Sensors, 22(24), 9695. https://doi.org/10.3390/s22249695