High-Speed and High-Power Ferroelectric Switching Current Measurement Instrument for Materials with Large Coercive Voltage and Remanent Polarization
<p>Schematic of the measurement instrument.</p> "> Figure 2
<p>Ferroelectric hysteresis loops for measured samples: (<b>a</b>) 60 µm thick LiTaO<sub>3</sub> single crystal and (<b>b</b>) 250 nm thick Al<sub>0.7</sub>Sc<sub>0.3</sub>N film.</p> "> Figure 3
<p>Typical PUND measurement results for Al<sub>0.7</sub>Sc<sub>0.3</sub>N. (<b>a</b>) Full sequence of applied voltage and measured current. (<b>b</b>) Magnified applied voltage and current curves during P pulse. (<b>c</b>) Magnified applied voltage and current curves during U pulse. Red lines represent measured current (red arrows), and black lines represent applied voltage (black arrows).</p> "> Figure 4
<p>Polarization evolutions based on PUND current measurement. (<b>a</b>) Applied voltage pulse rise time analysis to define <span class="html-italic">t</span> = 0. (<b>b</b>) Polarization evolution for LiTaO<sub>3</sub> with various voltages. Defined <span class="html-italic">t</span> = 0 is the voltage pulse starting time. (<b>c</b>) Polarization evolution for LiTaO<sub>3</sub> with various voltages. Defined <span class="html-italic">t</span> = 0 is t<sub>r1</sub> and t<sub>r2</sub> shown in (<b>a</b>). (<b>d</b>) Avrami exponents from polarization evolution curve of LiTaO<sub>3</sub> (<b>e</b>) Polarization evolution for Al<sub>0.7</sub>Sc<sub>0.3</sub>N with various voltages. Defined <span class="html-italic">t</span> = 0 is <span class="html-italic">t<sub>r</sub></span><sub>1</sub> and <span class="html-italic">t<sub>r</sub></span><sub>2</sub> shown in (<b>a</b>). (<b>f</b>) Avrami exponents from polarization evolution curve of Al<sub>0.7</sub>Sc<sub>0.3</sub>N.</p> ">
Abstract
:1. Introduction
2. Measurement Instrument
3. Materials
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Merz, W.J. Domain Formation and Domain Wall Motions in Ferroelectric BaTiO3 Single Crystals. Phys. Rev. 1954, 95, 690–698. [Google Scholar] [CrossRef]
- Ishibashi, Y.; Takagi, Y. Note on Ferroelectric Domain Switching. J. Phys. Soc. Jpn. 1971, 31, 506–510. [Google Scholar] [CrossRef]
- Ishibashi, Y.; Orihara, H. A Theory of D-E Hysteresis Loop—Application of Avrami Model. Integr. Ferroelectr. 1995, 9, 57–61. [Google Scholar] [CrossRef]
- Tagantsev, A.K.; Stolichnov, I.; Setter, N.; Cross, J.S.; Tsukada, M. Non-Kolmogorov-Avrami Switching Kinetics in Ferroelectric Thin Films. Phys. Rev. B 2002, 66, 214109. [Google Scholar] [CrossRef]
- Shur, V.Y. Kinetics of Ferroelectric Domains: Application of General Approach to LiNbO3 and LiTaO3. In Frontiers of Ferroelectricity: A Special Issue of the Journal of Materials Science; Springer: Boston, MA, USA, 2007; pp. 199–210. ISBN 038738037X. [Google Scholar]
- Sawyer, C.B.; Tower, C.H. Rochelle Salt as a Dielectric. Phys. Rev. 1930, 35, 269–273. [Google Scholar] [CrossRef]
- Camlibel, I. Spontaneous Polarization Measurements in Several Ferroelectric Oxides Using a Pulsed-Field Method. J. Appl. Phys. 1969, 40, 1690–1693. [Google Scholar] [CrossRef]
- Spang, M.; Hofstoetter, N. Evaluation of Current Measurement Accuracy for a Power Module with Integrated Shunt Resistors. In Proceedings of the PCIM Europe 2017; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremburg, Germany, 16–18 May 2017; pp. 1–8. [Google Scholar]
- Kamrani, E.; Lesage, F.; Sawan, M. Low-Noise, High-Gain Transimpedance Amplifier Integrated with SiAPD for Low-Intensity near-Infrared Light Detection. IEEE Sens. J. 2014, 14, 258–269. [Google Scholar] [CrossRef]
- Masalov, A.V.; Kuzhamuratov, A.; Lvovsky, A.I. Noise Spectra in Balanced Optical Detectors Based on Transimpedance Amplifiers. Rev. Sci. Instrum. 2017, 88, 113109. [Google Scholar] [CrossRef] [PubMed]
- Yazawa, K.; Ducharne, B.; Uchida, H.; Funakubo, H.; Blendell, J.E. Barkhausen Noise Analysis of Thin Film Ferroelectrics. Appl. Phys. Lett. 2020, 117, 012902. [Google Scholar] [CrossRef]
- Fichtner, S.; Wolff, N.; Lofink, F.; Kienle, L.; Wagner, B. AlScN: A III-V Semiconductor Based Ferroelectric. J. Appl. Phys. 2019, 125, 114103. [Google Scholar] [CrossRef]
- Tsai, S.L.; Hoshii, T.; Wakabayashi, H.; Tsutsui, K.; Chung, T.K.; Chang, E.Y.; Kakushima, K. On the Thickness Scaling of Ferroelectricity in Al0.78Sc0.22N Films. Jpn. J. Appl. Phys. 2021, 60, SBBA05. [Google Scholar] [CrossRef]
- Yazawa, K.; Drury, D.; Zakutayev, A.; Brennecka, G.L. Reduced Coercive Field in Epitaxial Thin Film of Ferroelectric Wurtzite Al0.7Sc0.3N. Appl. Phys. Lett. 2021, 118, 162903. [Google Scholar] [CrossRef]
- Fichtner, S.; Lofink, F.; Wagner, B.; Schonweger, G.; Kreutzer, T.N.; Petraru, A.; Kohlstedt, H. Ferroelectricity in AlScN: Switching, Imprint and Sub-150 Nm Films. In Proceedings of the IFCS-ISAF 2020—Joint Conference of the IEEE International Frequency Control Symposium and IEEE International Symposium on Applications of Ferroelectrics, Keystone, CO, USA, 19–23 July 2020. [Google Scholar]
- Yasuoka, S.; Shimizu, T.; Tateyama, A.; Uehara, M.; Yamada, H.; Akiyama, M.; Hiranaga, Y.; Cho, Y.; Funakubo, H. Effects of Deposition Conditions on the Ferroelectric Properties of (Al1−XScx)N Thin Films. J. Appl. Phys. 2020, 128, 114103. [Google Scholar] [CrossRef]
- Yazawa, K.; Zakutayev, A.; Brennecka, G.L. A Landau–Devonshire Analysis of Strain Effects on Ferroelectric Al1−xScxN. Appl. Phys. Lett. 2022, 121, 042902. [Google Scholar] [CrossRef]
- Yazawa, K.; Mangum, J.S.; Gorai, P.; Brennecka, G.L.; Zakutayev, A. Local Chemical Origin of Ferroelectric Behavior in Wurtzite Nitrides. J. Mater. Chem. C 2022, 10, 17557. [Google Scholar] [CrossRef]
- Keithley. 4200A-SCS Parameter Analyzer; 1KW-60780-6 Datasheet. Available online: https://www.tek.com/en/datasheet/4200a-scs-parameter-analyzer (accessed on 6 December 2022).
- Keithley. Series 2400 SourceMeter® SMU Instruments. 1KW-2798-4 Datasheet. Available online: https://www.tek.com/en/datasheet/series-2400-sourcemeter-instruments (accessed on 6 December 2022).
- Akiyama, M.; Umeda, K.; Honda, A.; Nagase, T. Influence of Scandium Concentration on Power Generation Figure of Merit of Scandium Aluminum Nitride Thin Films. Appl. Phys. Lett. 2013, 102, 021915. [Google Scholar] [CrossRef]
- Texas Instruments. OPA657 1.6-GHz, Low-Noise, FET-Input Operational Amplifier; SBOS197F Datasheet. Available online: https://www.ti.com/product/OPA657 (accessed on 6 December 2022).
- Yang, S.Y.; Zavaliche, F.; Mohaddes-Ardabili, L.; Vaithyanathan, V.; Schlom, D.G.; Lee, Y.J.; Chu, Y.H.; Cruz, M.P.; Zhan, Q.; Zhao, T.; et al. Metalorganic Chemical Vapor Deposition of Lead-Free Ferroelectric BiFeO3 Films for Memory Applications. Appl. Phys. Lett. 2005, 87, 102903. [Google Scholar] [CrossRef]
- Naganuma, H.; Inoue, Y.; Okamura, S. Evaluation of Electrical Properties of Leaky BiFeO3 Films in High Electric Field Region by High-Speed Positive-up-Negative-down Measurement. Appl. Phys. Express 2008, 1, 0616011–0616013. [Google Scholar] [CrossRef]
- Buzuayene, M. Rise Time vs. Bandwidth and Applications. Interference Technology. Available online: https://interferencetechnology.com/Rise-Time-vs-Bandwidth-and-Applications/ (accessed on 6 December 2022).
- Shur, V.; Rumyantsev, E.; Makarov, S. Kinetics of Phase Transformations in Real Finite Systems: Application to Switching in Ferroelectrics. J. Appl. Phys. 1998, 84, 445–451. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yazawa, K.; Zakutayev, A.; Brennecka, G.L. High-Speed and High-Power Ferroelectric Switching Current Measurement Instrument for Materials with Large Coercive Voltage and Remanent Polarization. Sensors 2022, 22, 9659. https://doi.org/10.3390/s22249659
Yazawa K, Zakutayev A, Brennecka GL. High-Speed and High-Power Ferroelectric Switching Current Measurement Instrument for Materials with Large Coercive Voltage and Remanent Polarization. Sensors. 2022; 22(24):9659. https://doi.org/10.3390/s22249659
Chicago/Turabian StyleYazawa, Keisuke, Andriy Zakutayev, and Geoff L. Brennecka. 2022. "High-Speed and High-Power Ferroelectric Switching Current Measurement Instrument for Materials with Large Coercive Voltage and Remanent Polarization" Sensors 22, no. 24: 9659. https://doi.org/10.3390/s22249659
APA StyleYazawa, K., Zakutayev, A., & Brennecka, G. L. (2022). High-Speed and High-Power Ferroelectric Switching Current Measurement Instrument for Materials with Large Coercive Voltage and Remanent Polarization. Sensors, 22(24), 9659. https://doi.org/10.3390/s22249659