Modeling Real-Life Urban Sensor Networks Based on Open Data
<p>Examples of connected devices in cities in Poland. (<b>a</b>) Bike rental station in Wrocław on 10 December 2019; (<b>b</b>) parking meter, tram, and scooter in Poznań on 4 August 2019; (<b>c</b>) electric kick scooters in Sopot on 29 November 2019.</p> "> Figure 2
<p>Examples of the data provided by GIOŚ <span class="html-italic">Air Quality</span> portal on 6 October 2022 [<a href="#B61-sensors-22-09264" class="html-bibr">61</a>].</p> "> Figure 3
<p>Samples of public transport vehicles data in two Polish cities on 16 October 2022. (<b>a</b>) Tram in Gdańsk [<a href="#B78-sensors-22-09264" class="html-bibr">78</a>]. (<b>b</b>) Bus in Poznań [<a href="#B79-sensors-22-09264" class="html-bibr">79</a>].</p> "> Figure 4
<p>Server-side filtered and formatted Wrocław City Bike [<a href="#B85-sensors-22-09264" class="html-bibr">85</a>] on 16 October 2022.</p> "> Figure 5
<p>Ticket machine and parking meter data on 23 October 2022. (<b>a</b>) Ticket machine in Gdańsk [<a href="#B91-sensors-22-09264" class="html-bibr">91</a>]. (<b>b</b>) Parking meter in Poznań [<a href="#B92-sensors-22-09264" class="html-bibr">92</a>].</p> "> Figure 6
<p>Open-data-based architecture for urban network modeling.</p> "> Figure 7
<p>Wireless connectivity graph of a static sensor network modeled in the city center of Poznań on 27 November 2019.</p> "> Figure 8
<p>Minimum spanning forest of modeled static sensor network graph in the city center of Poznań on 27 November 2019.</p> "> Figure 9
<p>Opportunistic spatiotemporal sensor network evolving graph modeled in the vicinity of Kaponiera Roundabout in Poznań on 27 November 2019.</p> "> Figure 10
<p>Space-time connectivity graph.</p> "> Figure 11
<p>First-contact graph.</p> "> Figure 12
<p>Opportunistic localized class-based multicast tree.</p> "> Figure 13
<p>Opportunistic spatiotemporal shortest paths to selected nodes.</p> ">
Abstract
:1. Introduction
2. Sensor Networks in Urban Environment
2.1. Types of Urban SenNot Applicable.sor Networks
2.2. Characteristics of Urban Sensor Nodes
3. Routing Research Problems in Urban Networks
3.1. Topology Modeling and Graph Representation
3.2. Opportunistic Routing
3.3. Data Aggregation
3.4. Data Offloading
4. Sources of Urban Nodes Location Data and Network Modeling Architecture
4.1. Data Availability
4.2. Data Provider
4.3. Data Format
4.4. Data Structure
- Figure 5b—no timestamp.
- Figure 5a—latitude key related to 54.409971066405 floating-point number.
- Figure 5b—second element of coordinates array, i.e., the 52.412023 floating-point number.
4.5. Data Scope
4.6. Data Update Frequency and Quality
4.7. Data Gathering, Processing, and Network Modeling Architecture
- Data gathering:
- (a)
- Query each data source;
- Data processing:
- (a)
- Extract and clean received data;
- (b)
- Preprocess, integrate, and store the data to local archive (data storage);
- Network modeling:
- (a)
- Retrieve the data of interest from local archive;
- (b)
- Model network topology and connectivity as a graph based on given modeling parameters and node attributes (e.g., position and type);
- (c)
- Solve network optimization problem (e.g., find a tree);
- (d)
- Calculate the properties (attributes) of the resulting network (graph);
- (e)
- Save the graph in the archive for further use;
- (f)
- Visualize the network (with or without background city map).
5. Network Modeling Proof of Concept
5.1. Spatial Graph Modeling
5.1.1. Static Connectivity Graph
- Time interval: 6 s;
- Area dimensions: 3 km by 1.7 km;
- Area boundaries:
- -
- Minimum latitude: 52.400;
- -
- Maximum latitude: 52.415;
- -
- Minimum longitude: 16.898;
- -
- Maximum longitude: 16.942;
- Radio range: 100 m;
- Radio coverage: omnidirectional.
- Nodes: 501;
- -
- Fixed nodes: 465;
- -
- Mobile nodes: 36;
- Average node degree: 4.02;
- Edges: 1008;
- Total spatial edge cost: 67,135 m;
- Connected components: 59.
5.1.2. Static Minimum Spanning Forest
- Nodes: 501;
- -
- Fixed nodes: 465;
- -
- Mobile nodes: 36;
- Average node degree: 1.76;
- Edges: 442;
- Total spatial edge cost: 23,645 m;
- Connected components: 59.
5.2. Spatiotemporal Graph Modeling
5.2.1. Dynamic Connectivity Graph
- Number of intervals (slots): 20;
- Time interval: 6 s;
- Area dimensions: 357 m by 272 m;
- Area boundaries:
- -
- Minimum latitude: 52.406511;
- -
- Maximum latitude: 52.408955;
- -
- Minimum longitude: 16.909878;
- -
- Maximum longitude: 16.915140;
- Radio coverage: omnidirectional;
- Radio range: 100 m;
- Relay nodes:
- -
- Mobile nodes: buses and trams;
- -
- Fixed nodes: air quality meters and parking meters;
- Destination nodes: public transport stops and ticket machines.
5.2.2. Space-Time Connectivity Graph
5.2.3. First-Contact Graph
- Physical nodes: 26;
- -
- Fixed nodes: 15;
- -
- Mobile nodes: 11;
- Node instances: 714;
- Average node degree: 3.78;
- Edges: 1348;
- Total spatial edge cost: 41,580 meters;
- Time span: 20 slots.
- Physical nodes: 26;
- -
- Fixed nodes: 15;
- -
- Mobile nodes: 11;
- Average node degree: 10.92;
- Edges: 142;
- Total spatial edge cost: 9949 m;
- Time span: 20 slots.
5.2.4. Opportunistic Localized Class-Based Multicast Tree
- Physical nodes: 25;
- -
- Fixed nodes: 15;
- -
- Mobile nodes: 10;
- Multicast tree nodes: 25;
- -
- Core relays: 5;
- -
- Stub relays: 7;
- -
- Destinations: 12;
- Average node degree: 1.92;
- Edges: 24;
- Total spatial edge cost: 1685 m;
- Time span: 19 slots.
5.2.5. Spatiotemporal Shortest Paths
- Physical nodes: 10;
- -
- Fixed nodes: 5;
- -
- Mobile nodes: 5;
- Multicast tree nodes: 10;
- -
- Core relays: 5;
- -
- Destinations: 4;
- Average node degree: 1.8;
- Edges: 9;
- Total spatial edge cost: 679 m;
- Time span: 20 slots.
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jenelius, E.; Cebecauer, M. Impacts of COVID-19 on public transport ridership in Sweden: Analysis of ticket validations, sales and passenger counts. Transp. Res. Interdiscip. Perspect. 2020, 8, 100242. [Google Scholar] [CrossRef] [PubMed]
- Musznicki, B.; Zwierzykowski, P. Survey of Simulators for Wireless Sensor Networks. Int. J. Grid Distrib. Comput. 2012, 5, 23–50. [Google Scholar]
- Atzori, L.; Iera, A.; Morabito, G. From “smart objects” to “social objects”: The next evolutionary step of the internet of things. IEEE Commun. Mag. 2014, 52, 97–105. [Google Scholar] [CrossRef]
- Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. Context Aware Computing for The Internet of Things: A Survey. IEEE Commun. Surv. Tutorials 2014, 16, 414–454. [Google Scholar] [CrossRef] [Green Version]
- Díaz, M.; Martín, C.; Rubio, B. State-of-the-art, challenges, and open issues in the integration of Internet of things and cloud computing. J. Netw. Comput. Appl. 2016, 67, 99–117. [Google Scholar] [CrossRef]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef] [Green Version]
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutorials 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Kliks, A.; Musznicki, B.; Kowalik, K.; Kryszkiewicz, P. Perspectives for resource sharing in 5G networks. Telecommun. Syst. 2018, 68, 605–619. [Google Scholar] [CrossRef] [Green Version]
- Kos, A.; Milutinović, V.; Umek, A. Challenges in wireless communication for connected sensors and wearable devices used in sport biofeedback applications. Future Gener. Comput. Syst. 2019, 92, 582–592. [Google Scholar] [CrossRef]
- Manjakkal, L.; Mitra, S.; Petillot, Y.R.; Shutler, J.; Scott, E.M.; Willander, M.; Dahiya, R. Connected Sensors, Innovative Sensor Deployment, and Intelligent Data Analysis for Online Water Quality Monitoring. IEEE Internet Things J. 2021, 8, 13805–13824. [Google Scholar] [CrossRef]
- Tang, T.; Ho, A.T.K. A path-dependence perspective on the adoption of Internet of Things: Evidence from early adopters of smart and connected sensors in the United States. Gov. Inf. Q. 2019, 36, 321–332. [Google Scholar] [CrossRef]
- Musznicki, B. Empirical Approach in Topology Control of Sensor Networks for Urban Environment. J. Telecommun. Inf. Technol. 2019, 1, 47–57. [Google Scholar] [CrossRef]
- Murty, R.N.; Mainland, G.; Rose, I.; Chowdhury, A.R.; Gosain, A.; Bers, J.; Welsh, M. CitySense: An Urban-Scale Wireless Sensor Network and Testbed. In Proceedings of the 2008 IEEE Conference on Technologies for Homeland Security, Waltham, MA, USA, 12–13 May 2008; pp. 583–588. [Google Scholar] [CrossRef]
- Sheikh, M.S.; Liang, J.; Wang, W. A Survey of Security Services, Attacks, and Applications for Vehicular Ad Hoc Netw. (VANETs). Sensors 2019, 19, 3589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurugollu, F.; Ahmed, S.H.; Hussain, R.; Ahmad, F.; Kerrache, C.A. Vehicular Sensor Networks: Applications, Advances and Challenges. Sensors 2020, 20, 3686. [Google Scholar] [CrossRef]
- Afzal, Z.; Kumar, M. Security of Vehicular Ad-Hoc Networks (VANET): A survey. J. Phys. Conf. Ser. 2020, 1427, 012015. [Google Scholar] [CrossRef]
- Rahim, A.; Khan, Z.; Muhaya, F.T.B.; Sher, M.; Kim, T.H. Sensor Based Framework for Secure Multimedia Communication in VANET. Sensors 2010, 10, 10146–10154. [Google Scholar] [CrossRef]
- Rathee, D.; Rangi, S.; Chakarvarti, P.; Singh, V. Recent trends in Wireless Body Area Network (WBAN) research and cognition based adaptive WBAN architecture for healthcare. Health Technol. 2014, 4, 1–6. [Google Scholar] [CrossRef]
- Yaghoubi, M.; Ahmed, K.; Miao, Y. Wireless Body Area Network (WBAN): A Survey on Architecture, Technologies, Energy Consumption, and Security Challenges. J. Sens. Actuator Netw. 2022, 11, 67. [Google Scholar] [CrossRef]
- Tong, L.; Zhao, Q.; Adireddy, S. Sensor networks with mobile agents. In Proceedings of the IEEE Military Communications Conference, Boston, MA, USA, 13–16 October; 2003; Volume 1, pp. 688–693. [Google Scholar] [CrossRef]
- Ma, K.; Zhang, Y.; Trappe, W. Managing the Mobility of a Mobile Sensor Network Using Network Dynamics. IEEE Trans. Parallel Distrib. Syst. 2008, 19, 106–120. [Google Scholar] [CrossRef]
- Santos, B.P.; Goussevskaia, O.; Vieira, L.F.; Vieira, M.A.; Loureiro, A.A. Mobile Matrix: Routing under mobility in IoT, IoMT, and Social IoT. Ad Hoc Netw. 2018, 78, 84–98. [Google Scholar] [CrossRef]
- Wang, W.; Srinivasan, V.; Chua, K.C. Using Mobile Relays to Prolong the Lifetime of Wireless Sensor Networks. In Proceedings of the 11th Annual International Conference on Mobile Computing and Networking, Cologne, Germany, 7–11 September 2015; Association for Computing Machinery: New York, NY, USA, 2005; pp. 270–283. [Google Scholar] [CrossRef]
- Kotsilieris, T.; Karetsos, G. Prolonging the Lifetime of Two-Tiered Wireless Sensor Networks with Mobile Relays. ISRN Sens. Netw. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Shah, R.C.; Roy, S.; Jain, S.; Brunette, W. Data MULEs: Modeling and analysis of a three-tier architecture for sparse sensor networks. Ad Hoc Netw. 2003, 1, 215–233. [Google Scholar] [CrossRef]
- Harary, F.; Gupta, G. Dynamic graph models. Math. Comput. Model. 1997, 25, 79–87. [Google Scholar] [CrossRef]
- Xuan, B.B.; Ferreira, A.; Jarry, A. Computing shortest, fastest, and foremost journeys in dynamic networks. Int. J. Found. Comput. Sci. 2003, 14, 267–285. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Cornelius, S.P.; Liu, Y.Y.; Wang, L.; Barabási, A.L. The fundamental advantages of temporal networks. Science 2017, 358, 1042–1046. [Google Scholar] [CrossRef]
- Merugu, S.; Ammar, M.H.; Zegura, E.W. Routing in Space and Time in Networks with Predictable Mobility; Technical Report; Georgia Institute of Technology: Atlanta, GA, USA, 2004. [Google Scholar]
- Huang, M.; Chen, S.; Zhu, Y.; Xu, B.; Wang, Y. Topology Control for Time-Evolving and Predictable Delay-Tolerant Networks. In Proceedings of the 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems, Valencia, Spain, 17–21 October 2010; IEEE: Piscataway, NJ, USA, 2011; pp. 82–91. [Google Scholar]
- George, B.; Shekhar, S. Time-aggregated graphs for modeling spatio-temporal networks. In Journal on Data Semantics XI; Springer: Berlin/Heidelberg, Germany, 2008; pp. 191–212. [Google Scholar]
- Kempe, D.; Kleinberg, J.; Kumar, A. Connectivity and inference problems for temporal networks. In Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, Portland, OR, USA, 21–23 May 2000; pp. 504–513. [Google Scholar]
- Holme, P.; Saramäki, J. Temporal Networks. Phys. Rep. 2012, 519, 97–125. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Cheng, J.; Huang, S.; Ke, Y.; Lu, Y.; Xu, Y. Path Problems in Temporal Graphs. Proc. VLDB Endow. 2014, 7, 721–732. [Google Scholar] [CrossRef] [Green Version]
- Flocchini, P.; Mans, B.; Santoro, N. Exploration of Periodically Varying Graphs. In Proceedings of the International Symposium on Algorithms and Computation, Honolulu, HI, USA, 16–18 December 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 534–543. [Google Scholar]
- Masuda, N.; Lambiotte, R. A Guide to Temporal Networks; World Scientific: Singapore, 2016. [Google Scholar]
- Holme, P. Modern temporal network theory: A colloquium. Eur. Phys. J. B 2015, 88, 1–30. [Google Scholar] [CrossRef]
- Holme, P.; Saramäki, J. Temporal Network Rheory; Springer: Berlin/Heidelberg, Germany, 2019; Volume 2. [Google Scholar]
- Wang, Y.; Yuan, Y.; Ma, Y.; Wang, G. Time-dependent graphs: Definitions, applications, and algorithms. Data Sci. Eng. 2019, 4, 352–366. [Google Scholar] [CrossRef] [Green Version]
- Musznicki, B.; Zwierzykowski, P. Performance Evaluation of Flooding Algorithms for Wireless Sensor Networks Based on EffiSen: The Custom-Made Simulator. In Simulation Technologies in Networking and Communications: Selecting the Best Tool for the Test; Pathan, A.S.K., Monowar, M.M., Khan, S., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2015. [Google Scholar]
- Hu, M.; Zhong, Z.; Ni, M.; Baiocchi, A. Design and Analysis of A Beacon-Less Routing Protocol for Large Volume Content Dissemination in Vehicular Ad Hoc Networks. Sensors 2016, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jadhav, P.; Satao, R. A Survey on Opportunistic Routing Protocols for Wireless Sensor Networks. Procedia Comput. Sci. 2016, 79, 603–609. [Google Scholar] [CrossRef] [Green Version]
- Pelusi, L.; Passarella, A.; Conti, M. Opportunistic Networking: Data Forwarding in Disconnected Mobile Ad Hoc Networks. Comm. Mag. 2006, 44, 134–141. [Google Scholar] [CrossRef]
- Cabrero, S.; García, R.; Pañeda, X.G.; Melendi, D. Understanding Opportunistic Networking for Emergency Services: Analysis of One Year of GPS Traces. In Proceedings of the 10th ACM MobiCom Workshop on Challenged Networks, Paris, France, 10–14 September 2014; Association for Computing Machinery: New York, NY, USA, 2015; pp. 31–36. [Google Scholar] [CrossRef] [Green Version]
- Musznicki, B.; Kowalik, K.; Kołodziejski, P.; Grzybek, E. Mobile and Residential INEA Wi-Fi Hotspot Network. In Proceedings of the 13th International Symposium on Wireless Communication Systems 2016 (ISWCS 2016), Poznan, Poland, 20–23 September 2016. Invited paper. [Google Scholar]
- Cruz, P.; Couto, R.S.; Costa, L.H.M. An algorithm for sink positioning in bus-assisted smart city sensing. Future Gener. Comput. Syst. 2019, 93, 761–769. [Google Scholar] [CrossRef]
- Zguira, Y.; Rivano, H.; Meddeb, A. Internet of Bikes: A DTN Protocol with Data Aggregation for Urban Data Collection. Sensors 2018, 18, 2819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cisco. Cisco Visual Networking Index, Global Mobile Data Traffic Forecast Update, 2015–2020 White Paper. Document ID: 958959758. 2016. Available online: http://www.audentia-gestion.fr/cisco/pdf/mobile-white-paper-c11-520862.pdf (accessed on 24 October 2022).
- Park, I.; Kim, D.; Har, D. MAC Achieving Low Latency and Energy Efficiency in Hierarchical M2M Networks With Clustered Nodes. IEEE Sens. J. 2015, 15, 1657–1661. [Google Scholar] [CrossRef]
- Bonola, M.; Bracciale, L.; Loreti, P.; Amici, R.; Rabuffi, A.; Bianchi, G. Opportunistic communication in smart city: Experimental insight with small-scale taxi fleets as data carriers. Ad Hoc Netw. 2016, 43, 43–55. [Google Scholar] [CrossRef]
- CRAWDAD—Dataset of Mobility Traces of Taxi Cabs in Rome, Italy. Available online: https://crawdad.org/roma/taxi/ (accessed on 24 October 2022).
- Dias, D.S.; Costa, L.H.M.; de Amorim, M.D. Data offloading capacity in a megalopolis using taxis and buses as data carriers. Veh. Commun. 2018, 14, 80–96. [Google Scholar] [CrossRef]
- Data.Rio Open Data Portal. Available online: https://www.data.rio (accessed on 24 October 2022).
- CRAWDAD—Dataset of Mobility Traces of Buses in Rio de Janeiro, Brasil, 19 March 2018. Available online: https://crawdad.org/coppe-ufrj/RioBuses/ (accessed on 24 October 2022).
- GZM—Bus GPS Locations. Available online: https://otwartedane.metropoliagzm.pl/dataset/lokalizacje-autobusow-ztm (accessed on 24 October 2022).
- Fielding, R.T.; Taylor, R.N. Principled Design of the Modern Web Architecture. ACM Trans. Internet Technol. 2002, 2, 115–150. [Google Scholar] [CrossRef]
- The Things Stack—Packet Broker Mapper. Available online: https://www.thethingsindustries.com/docs/getting-started/packet-broker/api/ (accessed on 24 October 2022).
- Airly Developer—Documentation. Available online: https://developer.airly.org/en/docs (accessed on 24 October 2022).
- Syngeos API. Available online: https://syngeos.pl/api/ (accessed on 24 October 2022).
- GIOŚ Air Quality Portal—Measurement Data Archives. Available online: https://powietrze.gios.gov.pl/pjp/archives (accessed on 24 October 2022).
- GIOŚ Air Quality Portal—Application Programming Interface. Available online: https://powietrze.gios.gov.pl/pjp/content/api?lang=en (accessed on 24 October 2022).
- Smart City Poznań. Available online: https://www.poznan.pl/mim/smartcity/api-dane-przestrzenne,p,25877,38305.html (accessed on 24 October 2022).
- Warsaw Open Data. Available online: https://api.um.warszawa.pl (accessed on 24 October 2022).
- CKAN—The Open Source Data Portal Software. Available online: https://ckan.org (accessed on 24 October 2022).
- Open Gdańsk. Available online: https://ckan.multimediagdansk.pl (accessed on 24 October 2022).
- Wrocław—Open data. Available online: https://www.wroclaw.pl/open-data/ (accessed on 24 October 2022).
- CKAN DataStore Extension. Available online: https://docs.ckan.org/en/2.9/maintaining/datastore.html (accessed on 24 October 2022).
- On the Threshold of a Breakthrough. Shared Mobility in Poland. Available online: https://smartride.pl/wp-content/uploads/2020/02/Raport_Shared_Mobility_2019_PL_maly.pdf (accessed on 24 October 2022).
- blinkee.city. Available online: https://blinkee.city (accessed on 24 October 2022).
- Bolt—Scooter Rental. Available online: https://bolt.eu/en/scooters/ (accessed on 24 October 2022).
- Poznań City Bike—How it Works? Available online: https://poznanskirower.pl/en/polski-jak-to-dziala/ (accessed on 24 October 2022).
- Traficar—How It Works? Available online: https://www.traficar.pl/how (accessed on 24 October 2022).
- Take & Drive. Available online: https://takeanddrive.eu/ (accessed on 24 October 2022).
- Get Public Information. Available online: https://www.gov.pl/web/gov/uzyskaj-informacje-publiczna (accessed on 24 October 2022).
- Crockford, D. The Application/json Media Type for JavaScript Object Notation (JSON); RFC 4627; IETF: Fremont, CA, USA, 2006. [Google Scholar]
- Shafranovich, Y. Common Format and MIME Type for Comma-Separated Values (CSV) Files; RFC 4180; IETF: Fremont, CA, USA, 2005. [Google Scholar]
- Protocol Buffers. Available online: https://developers.google.com/protocol-buffers/ (accessed on 24 October 2022).
- Open Gdańsk—GPS Positions of the Vehicles. Available online: https://ckan.multimediagdansk.pl/dataset/tristar/resource/0683c92f-7241-4698-bbcc-e348ee355076 (accessed on 24 October 2022).
- ZTM Poznań—For Developers—GTFS-RT. Available online: https://www.ztm.poznan.pl/pl/dla-deweloperow/gtfsRtFiles (accessed on 24 October 2022).
- Butler, H.; Daly, M.; Doyle, A.; Gillies, S.; Schaub, T.; Hagen, S. The GeoJSON Format; RFC 7946; IETF: Fremont, CA, USA, 2016. [Google Scholar]
- GTFS Realtime Overview. Available online: https://developers.google.com/transit/gtfs-realtime (accessed on 24 October 2022).
- Open Gdańsk—GTFS-RT Resources. Available online: https://ckan.multimediagdansk.pl/dataset/tristar/resource/976e1fd1-73d9-4237-b6ba-3c06004d1105 (accessed on 24 October 2022).
- Data Elements and Interchange Formats—Information Interchange— Representation of Dates and Times; Technical Report; International Organization for Standardization: London, UK, 2004.
- Linux Manual Page—Time(2). Available online: https://man7.org/linux/man-pages/man2/time.2.html (accessed on 24 October 2022).
- Wrocław Open Data—Wrocław City Bike Stations. Available online: https://www.wroclaw.pl/open-data/dataset/nextbikesoap_data/resource/42eea6ec-43c3-4d13-aa77-a93394d6165a (accessed on 24 October 2022).
- Wrocław City Bike. Available online: https://wroclawskirower.pl/en/ (accessed on 24 October 2022).
- Department of Defense World Geodetic System 1984: Its Definition and Relationships with Local Geodetic Systems, 2nd ed.; Technical Report; Defense Mapping Agency: Fairfax, VA, USA, 1991.
- Open Gdańsk—Public Vahicles List. Available online: https://ckan.multimediagdansk.pl/dataset/tristar/resource/fff34d32-885d-4622-a9a2-c2d18ccf68c1 (accessed on 24 October 2022).
- Open Gdańsk—Timetables. Available online: https://ckan.multimediagdansk.pl/dataset/tristar/resource/a023ceb0-8085-45f6-8261-02e6fcba7971 (accessed on 24 October 2022).
- ZTM Poznań—For Developers—GTFS Timetables. Available online: https://www.ztm.poznan.pl/pl/dla-deweloperow/gtfsFiles (accessed on 24 October 2022).
- Open Gdańsk—Positions of Ticket Machines. Available online: https://ckan.multimediagdansk.pl/dataset/tristar/resource/af7bf4a9-e62e-4af2-906a-fa27c2532dfd (accessed on 24 October 2022).
- Poznań—Positions of Parking Meters. Available online: https://www.poznan.pl/mim/plan/map_service.html?mtype=pub_transport&co=parking_meters (accessed on 24 October 2022).
- Warsaw Open Data—Public Vehicle Positions—API Documentation. Available online: https://api.um.warszawa.pl/files/9fae6f84-4c81-476e-8450-6755c8451ccf.pdf (accessed on 24 October 2022).
- BusLive. Available online: https://buslive.pl (accessed on 24 October 2022).
- Open Gdańsk—List of Bus Stops. Available online: https://ckan.multimediagdansk.pl/dataset/tristar/resource/4c4025f0-01bf-41f7-a39f-d156d201b82b (accessed on 24 October 2022).
- NetworkX—Network Analysis in Python. Available online: https://networkx.org/ (accessed on 24 October 2022).
- OpenStreetMap. Available online: https://www.openstreetmap.org/copyright (accessed on 24 October 2022).
- Piechowiak, M.; Zwierzykowski, P. Simulations of the MAC Layer in the LoRaWAN Networks. J. Telecommun. Inf. Technol. 2020, 22–27. [Google Scholar] [CrossRef]
- Piechowiak, M.; Zwierzykowski, P. Efficiency Analysis of Multicast Routing Algorithms in Large Networks. In Proceedings of the International Conference on Networking and Services (ICNS ’07), Athens, Greece, 19–25 June 2007; p. 101. [Google Scholar] [CrossRef]
- Piechowiak, M.; Kotlarz, P. Network topology models for telecommunication and automation networks. Image Process. Commun. 2010, 15, 47–53. [Google Scholar]
- Poznań—Facts and Numbers—Population. Available online: https://www.poznan.pl/mim/s8a/-,p,24932,24933.html (accessed on 24 October 2022).
- Robusto, C.C. The cosine-haversine formula. Am. Math. Mon. 1957, 64, 38–40. [Google Scholar] [CrossRef]
- Kruskal, J.B. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 1956, 7, 48–50. [Google Scholar] [CrossRef]
- Piechowiak, M.; Stasiak, M.; Zwierzykowski, P. Analysis of the Influence of Group Members Arrangement on the Multicast Tree Cost. In Proceedings of the 2009 Fifth Advanced International Conference on Telecommunications, Washington, DC, USA, 24–28 May 2009; pp. 429–434. [Google Scholar]
- Piechowiak, M.; Zwierzykowski, P. Performance of Fast Multicast Algorithms in Real Networks. In Proceedings of the EUROCON 2007—The International Conference on “Computer as a Tool”, Warsaw, Poland, 9–12 September 2007; pp. 956–961. [Google Scholar] [CrossRef]
- Głąbowski, M.; Musznicki, B.; Nowak, P.; Zwierzykowski, P. Review and Performance Analysis of Shortest Path Problem Solving Algorithms. Int. J. Adv. Softw. 2014, 7, 20–30. [Google Scholar]
- Musznicki, B.; Tomczak, M.; Zwierzykowski, P. Dijkstra-based localized multicast routing in Wireless Sensor Networks. In Proceedings of the 2012 8th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), Poznan, Poland, 18–20 July 2012; pp. 1–6. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musznicki, B.; Piechowiak, M.; Zwierzykowski, P. Modeling Real-Life Urban Sensor Networks Based on Open Data. Sensors 2022, 22, 9264. https://doi.org/10.3390/s22239264
Musznicki B, Piechowiak M, Zwierzykowski P. Modeling Real-Life Urban Sensor Networks Based on Open Data. Sensors. 2022; 22(23):9264. https://doi.org/10.3390/s22239264
Chicago/Turabian StyleMusznicki, Bartosz, Maciej Piechowiak, and Piotr Zwierzykowski. 2022. "Modeling Real-Life Urban Sensor Networks Based on Open Data" Sensors 22, no. 23: 9264. https://doi.org/10.3390/s22239264
APA StyleMusznicki, B., Piechowiak, M., & Zwierzykowski, P. (2022). Modeling Real-Life Urban Sensor Networks Based on Open Data. Sensors, 22(23), 9264. https://doi.org/10.3390/s22239264