Multiple Mainlobe Interferences Suppression Based on Eigen-Subspace and Eigen-Oblique Projection
<p>Processing diagram of the proposed method.</p> "> Figure 2
<p>Comparison of beam pattern.</p> "> Figure 3
<p>Comparison of array output data.</p> "> Figure 4
<p>Analysis of the impact of Input SNR on Output SINR.</p> "> Figure 5
<p>Analysis of the impact of snapshots number on output SINR.</p> "> Figure 6
<p>Analysis of the impact of input SNR on ISR.</p> ">
Abstract
:1. Introduction
- This method has higher interference suppression ratio (ISR) when the desired signal and multiple mainlobe interferences coexist in the received data; that is, the interference suppression capability is better than other methods;
- This method has low complexity and a fast convergence rate and is able to minimize the desired signal loss while suppressing mainlobe interference.
2. Signal Model
3. Proposed Method
3.1. The Construction of Eigen-Oblique Projection Matrix
3.2. The Reconstruction of SINCM
3.3. Adaptive Weight Vector Calculation
3.4. Summary of Proposed Method
Algorithm 1 Multiple mainlobe interferences suppression algorithm |
Input: received data |
Output: output data |
1: Calculate the MUSIC spectrum of the received data by Equation (11); |
2: Reconstruct the covariance matrices and respectively by Equations (13) and (21); |
3: Process and with eigen-decomposition, construct subspaces and by Equations (16), (17) and (23), calculate eigen-oblique projection matrix according to Equation (24); |
4: Reconstruct the SINCM by Equations (26) and (28); |
5: Calculate the beamformer adaptive weight vector by Equation (29), and calculate the output data by Equation (30). |
4. Simulation Results
4.1. Comparison of Beam Pattern
4.2. Comparison of Array Output Data
4.3. Analysis of the Impact of Input SNR on Output SINR
4.4. Analysis of the Impact of Snapshots Number on Output SINR
4.5. Analysis of the Impact of Input SNR on ISR
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reed, I.S.; Mallett, J.D.; Brennan, L.E. Rapid convergence rate in adaptive arrays. IEEE Trans. Aerosp. Electron. Syst. 1974, AES-10, 853–863. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Z.; Zeng, T.; Long, T.; Sarkar, T.K. Mainlobe interference suppression based on eigen-projection processing and covariance matrix reconstruction. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1369–1372. [Google Scholar] [CrossRef]
- Gu, Y.; Leshem, A. Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation. IEEE Trans. Signal Process. 2012, 60, 3881–3885. [Google Scholar]
- Yang, X.; Yin, P.; Zeng, T.; Sarkar, T.K. Applying auxiliary array to suppress mainlobe interference for ground-based radar. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 433–436. [Google Scholar] [CrossRef]
- Yang, X.; Yin, P.; Zeng, T. Mainlobe interference suppression based on large aperture auxiliary array. In Proceedings of the 2012 IEEE Asia-Pacific Conference on Antennas and Propagation, Singapore, 27–29 August 2012; pp. 317–318. [Google Scholar]
- Xiang, Z.; Chen, B.; Yang, M. Transmitter polarization optimization with polarimetric MIMO radar for mainlobe interference suppression. Digit. Signal Process. 2017, 65, 19–26. [Google Scholar] [CrossRef]
- Dai, H.; Wang, X.; Li, Y.; Liu, Y.; Xiao, S. Main-lobe jamming suppression method of using spatial polarization characteristics of antennas. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 2167–2179. [Google Scholar] [CrossRef]
- Makur, A. Complex robust whitening with application to blind identification of same DoA multipath. Signal Process. 2014, 94, 514–520. [Google Scholar] [CrossRef]
- Huang, G.; Yang, L.; Su, G. Blind source separation used for radar anti-jamming. In Proceedings of the International Conference on Neural Networks and Signal Processing, Nanjing, China, 14–17 December 2003; pp. 1382–1385. [Google Scholar]
- Ge, M.; Cui, G.; Yu, X.; Huang, D.; Kong, L. Mainlobe jamming suppression via blind source separation. In Proceedings of the 2018 IEEE Radar Conference (RadarConf18), Oklahoma City, OK, USA, 23–27 April 2018; pp. 914–918. [Google Scholar]
- Bhowmik, B.; Tripura, T.; Hazra, B.; Pakrashi, V. Real time structural modal identification using recursive canonical correlation analysis and application towards online structural damage detection. J. Sound Vib. 2020, 468, 115101. [Google Scholar] [CrossRef]
- Luo, S.; Ying, X.; Hao, C.; Bin, T. An algorithm of radar deception jamming suppression based on blind signal separation. In Proceedings of the 2011 International Conference on Computational Problem-Solving (ICCP), Chengdu, China, 21–23 October 2011; pp. 167–170. [Google Scholar]
- Li, R.F.; Wang, Y.L.; Wan, S.H. Research of reshaping adapted pattern under mainlobe interference conditions. Mod. Radar 2002, 3, 14. [Google Scholar]
- Qian, J.; He, Z. Mainlobe interference suppression with eigenprojection algorithm and similarity constraints. Electron. Lett. 2016, 52, 228–230. [Google Scholar] [CrossRef]
- Qian, J.; He, Z.; Jia, F.; Zhang, X. Mainlobe interference suppression in adaptive array. In Proceedings of the 2016 IEEE 13th International Conference on Signal Processing (ICSP), Chengdu, China, 6–10 November 2016; pp. 470–474. [Google Scholar]
- Luo, Z.; Wang, H.; Lv, W.; Tian, H. Mainlobe anti-jamming via eigen-projection processing and covariance matrix reconstruction. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2017, 100, 1055–1059. [Google Scholar] [CrossRef]
- Yang, B.; Li, W.; Li, S. Mainlobe Interference Suppression via Eigen-Projection Processing and Covariance Matrix Reconstruction in Array Antenna. Appl. Comput. Electromagn. Soc. J. 2021, 36, 1468–1473. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, C.; Yang, X.; Xue, J. Adaptive Beamforming Based on Eigen-Oblique Projection for Mainlobe Interference Suppression. In Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 11–13 December 2019; pp. 1–4. [Google Scholar]
- Wang, Y.; Bao, Q.; Chen, Z. Robust mainlobe interference suppression for coherent interference environment. EURASIP J. Adv. Signal Process. 2016, 2016, 135. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yu, B.G.; Huang, P. Mainlobe interference suppression via eigen-projection processing and covariance matrix sparse reconstruction. IEICE Electron. Express 2018, 15, 20180683. [Google Scholar]
- Wang, Y.; Bao, Q.; Chen, Z. Multiple mainlobe interferences suppression based on subspace matrix filtering and covariance matrix reconstruction. J. Appl. Remote Sens. 2016, 10, 035008. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, Z.; Jing, G.; Ma, T. Adaptive beamforming via desired signal robust removal for interference-plus-noise covariance matrix reconstruction. Circuits Syst. Signal Process. 2021, 40, 401–417. [Google Scholar] [CrossRef]
- Capon, J. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 1969, 57, 1408–1418. [Google Scholar] [CrossRef] [Green Version]
- Stutzman, W.L.; Thiele, G.A. Antenna Theory and Design; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Viberg, M.; Ottersten, B. Sensor array processing based on subspace fitting. IEEE Trans. Signal Process. 1991, 39, 1110–1121. [Google Scholar] [CrossRef]
Method | Related Coefficient |
---|---|
SMI | 0.9602 |
EMP-SC | 0.9677 |
EMP-CMR | 0.9677 |
EMP-CMYR | 0.8188 |
EMP-CMIR | 0.3228 |
EMP-IAA | 0.6030 |
EMP-CS | 0.8660 |
PROPOSED | 0.9680 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Y.; Lu, Y.; Wei, S.; Li, Z. Multiple Mainlobe Interferences Suppression Based on Eigen-Subspace and Eigen-Oblique Projection. Sensors 2022, 22, 8494. https://doi.org/10.3390/s22218494
Ji Y, Lu Y, Wei S, Li Z. Multiple Mainlobe Interferences Suppression Based on Eigen-Subspace and Eigen-Oblique Projection. Sensors. 2022; 22(21):8494. https://doi.org/10.3390/s22218494
Chicago/Turabian StyleJi, Yunhao, Yaobing Lu, Shan Wei, and Zigeng Li. 2022. "Multiple Mainlobe Interferences Suppression Based on Eigen-Subspace and Eigen-Oblique Projection" Sensors 22, no. 21: 8494. https://doi.org/10.3390/s22218494
APA StyleJi, Y., Lu, Y., Wei, S., & Li, Z. (2022). Multiple Mainlobe Interferences Suppression Based on Eigen-Subspace and Eigen-Oblique Projection. Sensors, 22(21), 8494. https://doi.org/10.3390/s22218494