Mechanical Property Test of Grass Carp Skin Material Based on the Digital Image Correlation Method
<p>Matching principal diagram of DIC.</p> "> Figure 2
<p>Binocular system imaging model.</p> "> Figure 3
<p>Experimental setup: (<b>a</b>) measurement setup; (<b>b</b>) GFSA; (<b>c</b>) overall setup.</p> "> Figure 4
<p>Displacement calibration: (<b>a</b>) displacement calibration curve of tensile machine; (<b>b</b>) displacement calibration error.</p> "> Figure 5
<p>Dimensions of GFSA. (Unit: mm).</p> "> Figure 6
<p>Grayscale images of GFSA: (<b>a</b>,<b>b</b>) are the effects of the epidermis without artificial speckle and sprayed with artificial speckle, respectively; (<b>c</b>,<b>d</b>) are the effects of the dermis without artificial speckle and sprayed with artificial speckle, respectively.</p> "> Figure 7
<p>Grayscale histogram of GFSA. (<b>a</b>) epidermis without artificial speckle; (<b>b</b>) epidermis with artificial speckle; (<b>c</b>)dermis without artificial speckle; (<b>d</b>)dermis with artificial speckle.</p> "> Figure 8
<p>Variation of the specimen.</p> "> Figure 9
<p>Cloud map of displacement and strain measured by DIC: (<b>a</b>) axial displacement; (<b>b</b>) axial strain.</p> "> Figure 10
<p><span class="html-italic">E</span> of GFSA.</p> "> Figure 11
<p>Engineering stress–strain curves of GFSA: (<b>a</b>) 2.5 kg; (<b>b</b>) 1.1 kg.</p> "> Figure 12
<p>Engineering stress–strain in different parts: (<b>a</b>) head; (<b>b</b>) middle; (<b>c</b>) tail.</p> "> Figure 13
<p>Accuracy of selected sample points.</p> "> Figure 14
<p>Stress–strain analysis of GFSA: (<b>a</b>) 1.1 kg hydrophilic tail; (<b>b</b>) 1.1 kg dry tail.</p> ">
Abstract
:1. Introduction
2. Measurement Principle of the Binocular Stereo DIC System
2.1. Principle of DIC
2.2. Binocular Imaging
2.3. Speckle Pattern Evaluation Method
3. Experiments
3.1. Binocular Stereo DIC Experimental Setup
3.2. Accuracy Calibration of Tensile Machine
3.3. Sample Preparation
3.4. Speckle Evaluation
4. Results
5. Discussion
5.1. Verification of Displacement Accuracy
5.2. Verification of Strain Accuracy
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, G.J.; Nam, W.I.; Song, Y.M. Robustness of an artificially tailored fisheye imaging system with a curvilinear image surface. Opt. Laser Technol. 2017, 96, 50–57. [Google Scholar] [CrossRef]
- Dardari, D.; Lequint, C.; Jugnet, A.C.; Benard, T.; Bouly, M.; Penfornis, A. Curing Necrotic Angiodermatitis with an Intact Fish Skin Graft in a Patient Living with Diabetes. Medicina 2022, 58, 292. [Google Scholar] [CrossRef] [PubMed]
- Szewciw, L.; Barthelat, F. Mechanical properties of striped bass fish skin: Evidence of an exotendon function of the stratum compactum. J. Mech. Behav. Biomed. Mater. 2017, 73, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Seo, E.; Park, J.; Gil, J.-E.; Lim, H.; Lee, D.; Lee, S.J. Multifunctional biopolymer coatings inspired by loach skin. Progress Org. Coat. 2021, 158, 106383. [Google Scholar] [CrossRef]
- Bian, C.; Huang, Y.; Li, J.; You, X.; Yi, Y.; Ge, W.; Shi, Q. Divergence, evolution and adaptation in ray-finned fish genomes. Sci. China Life Sci. 2019, 62, 1003–1018. [Google Scholar] [CrossRef] [PubMed]
- Vernerey, F.J.; Barthelat, F. Skin and scales of teleost fish: Simple structure but high performance and multiple functions. J. Mech. Phys. Solids 2014, 68, 66–76. [Google Scholar] [CrossRef]
- Jo, W.; Kang, H.S.; Choi, J.; Jung, J.; Hyun, J.; Kwon, J.; Kim, I.; Lee, H.; Kim, H.-T. Light-Designed Shark Skin-Mimetic Surfaces. Nano Lett. 2021, 21, 5500–5507. [Google Scholar] [CrossRef]
- Acciaioli, A.; Falco, L.; Baleani, M. Measurement of apparent mechanical properties of trabecular bone tissue: Accuracy and limitation of digital image correlation technique. J. Mech. Behav. Biomed. Mater. 2020, 103, 103542. [Google Scholar] [CrossRef]
- Chen, B.; Pan, B. Measuring true stress–strain curves of cylindrical bar samples with mirror-assisted multi-view digital image correlation. Strain 2021, 58, e12403. [Google Scholar] [CrossRef]
- Attia, T.; Di Benedetto, H.; Sauzéat, C.; Pouget, S. Behaviour of an interface between pavement layers obtained using Digital Image Correlation. Mater. Struct. 2021, 54, 38. [Google Scholar] [CrossRef]
- Mohamadizadeh, A.; Biro, E.; Worswick, M. Novel Double-Half Spot Weld Testing Technique For Damage Progress And Failure Analysis Using Digital Image Correlation Techniques. Exp. Mech. 2021, 61, 1405–1418. [Google Scholar] [CrossRef]
- Baldi, A. Robust Algorithms for Digital Image Correlation in the Presence of Displacement Discontinuities. Opt. Lasers Eng. 2020, 133, 106113. [Google Scholar] [CrossRef]
- Bao, S.; Wang, Y.; Liu, L.; Lu, Y.; Yan, P. An error elimination method for high-temperature digital image correlation using color speckle and camera. Opt. Lasers Eng. 2019, 116, 47–54. [Google Scholar] [CrossRef]
- Yz, A.; Lf, B.; Sd, C.; Jl, A. Full-field deformation measurements in the transmission electron microscope using digital image correlation and particle tracking. Mater. Charact. 2022, 183, 111598. [Google Scholar]
- Palanca, M.; Tozzi, G.; Cristofolini, L. The use of digital image correlation in the biomechanical area: A review. Int. Biomech. 2015, 3, 1–21. [Google Scholar] [CrossRef]
- Morosato, F.; Traina, F.; Cristofolini, L. A reliable in vitro approach to assess the stability of acetabular implants using digital image correlation. Strain 2019, 55, e12318. [Google Scholar] [CrossRef]
- Chen, Y.F.; Dang, N.M.; Wang, Z.Y.; Chang, L.W.; Ku, W.Y.; Lo, Y.L.; Lin, M.T. Use of Digital Image Correlation Method to Measure Bio-Tissue Deformation. Coatings 2021, 11, 924. [Google Scholar] [CrossRef]
- Cisar, P.; Bekkozhayeva, D.; Movchan, O.; Saberioon, M.; Schraml, R. Computer vision based individual fish identification using skin dot pattern. Sci. Rep. 2021, 11, 16904. [Google Scholar] [CrossRef]
- Pan, B.; Xie, H.; Wang, Z. Equivalence of digital image correlation criteria for pattern matching. Appl. Opt. 2010, 49, 5501–5509. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Shao, X.; Liu, C.; He, X. Accuracy analysis of an orthogonally arranged four-camera 3D digital image correlation system. Appl. Opt. 2019, 58, 6535–6544. [Google Scholar] [CrossRef]
- Feng, M.; Huang, S.; Wang, J.; Yang, B.; Zheng, T. Accurate calibration of a multi-camera system based on flat refractive geometry. Appl. Opt. 2017, 56, 9724–9734. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. A flexible new technique for camera calibration. IEEE T. Pattern Anal. 2000, 22, 1330–1334. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.L.; Pan, B. A Review of Speckle Pattern Fabrication and Assessment for Digital Image Correlation. Exp. Mech. 2017, 57, 1161–1181. [Google Scholar] [CrossRef]
- Su, Y.; Gao, Z.; Fang, Z.; Liu, Y.; Wang, Y.; Zhang, Q.; Wu, S. Theoretical analysis on performance of digital speckle pattern: Uniqueness, accuracy, precision, and spatial resolution. Opt. Express 2019, 27, 22439–22474. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Zhang, Q. Glare: A free and open-source software for generation and assessment of digital speckle pattern. Opt. Lasers Eng. 2022, 148, 106766. [Google Scholar] [CrossRef]
- Pan, B. Thermal error analysis and compensation for digital image/volume correlation. Opt. Lasers Eng. 2018, 101, 1–15. [Google Scholar] [CrossRef]
- Karimi, A.; Navidbakhsh, M.; Haghighatnama, M.; Haghi, A.M. Determination of the axial and circumferential mechanical properties of the skin tissue using experimental testing and constitutive modeling. Comput. Methods Biomech. Biomed. Eng. 2015, 18, 1768–1774. [Google Scholar] [CrossRef]
Sequence | Size/Pixel | Duty Cycle | Average Grayscale Gradient |
---|---|---|---|
a | 18.78 | 65.95% | 3.87 |
b | 13.12 | 37.19% | 6.05 |
c | 25.08 | 54.87% | 2.80 |
d | 4.91 | 55.64% | 9.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Ge, P.; Fu, Z.; Dan, X.; Li, G. Mechanical Property Test of Grass Carp Skin Material Based on the Digital Image Correlation Method. Sensors 2022, 22, 8364. https://doi.org/10.3390/s22218364
Zhang M, Ge P, Fu Z, Dan X, Li G. Mechanical Property Test of Grass Carp Skin Material Based on the Digital Image Correlation Method. Sensors. 2022; 22(21):8364. https://doi.org/10.3390/s22218364
Chicago/Turabian StyleZhang, Mei, Pengxiang Ge, Zhongnan Fu, Xizuo Dan, and Guihua Li. 2022. "Mechanical Property Test of Grass Carp Skin Material Based on the Digital Image Correlation Method" Sensors 22, no. 21: 8364. https://doi.org/10.3390/s22218364
APA StyleZhang, M., Ge, P., Fu, Z., Dan, X., & Li, G. (2022). Mechanical Property Test of Grass Carp Skin Material Based on the Digital Image Correlation Method. Sensors, 22(21), 8364. https://doi.org/10.3390/s22218364