Soft Robots’ Dynamic Posture Perception Using Kirigami-Inspired Flexible Sensors with Porous Structures and Long Short-Term Memory (LSTM) Neural Networks
<p>Kirigami-inspired cutting patterns (<b>top</b>) and photos of the wire connector ports (<b>bottom</b>) of sensors. (<b>a</b>) Sensors with two-unit kirigami structure; (<b>b</b>) Sensors with three-unit kirigami structure; (<b>c</b>) Sensors with four-unit kirigami structure.</p> "> Figure 2
<p>Planer fabrication process of kirigami-inspired flexible sponge sensors. Order of layers and location holes for fabrication are presented.</p> "> Figure 3
<p>Experimental setup of bending angle perception of a soft pneumatic fiber-reinforced bending actuator by kirigami-inspired flexible sponge sensors. (<b>a</b>) The actuator is at resting state; (<b>b</b>) the actuator is at pressurized state. A scale bar of 1cm ispresented.</p> "> Figure 4
<p>Kinematic description of the bending actuator and kirigami-inspired flexible sensors. (<b>a</b>) Bending actuator at resting state; (<b>b</b>) bending actuator in a pressurized state with a schematic diagram of the finger model; (<b>c</b>) schematic diagram of the initial sensor pattern and the stretched sensor pattern.</p> "> Figure 5
<p>Structure of the calibration neural network based on a long short-term memory (LSTM) neural network. One input layer, three hidden layers with dropout layers and one output layer are included.</p> "> Figure 6
<p>Experimental setup for sensor stretching experiment. Photos of a stretched sensor are shown in the top left corner. A scale bar with 1 cm is presented.</p> "> Figure 7
<p>Schematic diagram of the boundary conditions setup in finite element analysis (FEA).</p> "> Figure 8
<p>Results of the sensor stretching experiment. (<b>a</b>) Experimental results of the conductive sponge material. (<b>b</b>) Experimental results of the conductive silicon material. Resistive force of the sensors at a 16.7% deformation ratio (respective to a 45<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math> actuator overall bending angle) and 33.5% deformation ratio (respective to 90<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math> actuator overall bending angle) are indicated.</p> "> Figure 9
<p>Finite element analysis (FEA) results of kirigami-inspired flexible sponge sensors with (<b>a</b>) a two-unit kirigami cutting pattern, (<b>b</b>) a three-unit kirigami cutting pattern and (<b>c</b>) a four-unit kirigami cutting pattern.</p> "> Figure 10
<p>Resistance responses of sensors with (<b>a</b>) two-unit kirigami cutting patterns, (<b>b</b>) three-unit kirigami cutting patterns and (<b>c</b>) four-unit kirigami cutting patterns with respect to bending angles; 10 kPa/s (solid lines), 50 kPa/s (dashed lines) and 100 kPa/s (dotted lines).</p> "> Figure 11
<p>Performance of the LSTM calibration neural network in predicting the random motion of soft actuators. (<b>a</b>) Results for sensors with two-unit structure; (<b>b</b>) results for sensors with three-unit structure; (<b>c</b>) results for sensors with four-unit structure. Ground truth is indicated using a solid line. Prediction results are indicated using a dashed line.</p> "> Figure 12
<p>Performance of the LSTM calibration neural network in predicting joints angles of actuators in random motion. (<b>a</b>) Results for sensors with two-unit structure; (<b>b</b>) results for sensors with three-unit structure; (<b>c</b>) results for sensors with four-unit structure. Ground truth is indicated using a solid line. Prediction results are indicated using a dashed line.</p> "> Figure 13
<p>Finger-joint angle predictions using kirigami-inspired flexible sponge sensors. <b>Top</b>: photos of a wooden finger model with time step. Bottom: prediction of joints angles with ground truth. (<b>a</b>) Captured at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math> s; (<b>b</b>) Captured at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>33</mn> </mrow> </semantics></math> s; (<b>c</b>) Captured at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>79</mn> </mrow> </semantics></math> s. (<b>d</b>) Prediction of finger-joint angles within a 90 s time-fram (time steps of finger postures in (<b>a</b>–<b>c</b>) are listed). Red lines: prediction. Blue lines: ground truth.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design Overview and Justification
2.1.1. Design and Fabrication of Sensors with Kirigami-Inspired Structures and Soft Fiber-Reinforced Bending Actuators (FRBAs)
2.1.2. Kinematic Description of Sensors Integrated with Bending Actuators
2.1.3. Design of a Neural Network for Sensor Calibration
2.2. Experimental Setup
2.2.1. Determining the Characteristics of Sensors
- Experimental Setup to Determine the Mechanical Properties of Sensors
- Finite Element Analysis (FEA) Setup
- Experimental Setup to Determine the Resistance Responses of Sensors
2.2.2. Benchtop Test to Determine Sensors’ Performances and Calibration Neural Network Training
3. Results
3.1. Characteristics of Kirigami-Inspired Sensors
- Mechanical Properties of Kirigami-Inspired Flexible Sensors
- Finite Element Analysis (FEA) Results
- Resistance Response of Kirigami-Inspired Flexible Sensors
3.2. Performance of the Calibration Neural Network
3.3. Finger-Joint-Angle Prediction
4. Discussion
4.1. Resisting Effects of Kirigami-Inspired Sponge Sensors on the Attached Bending Actuator
4.2. Selection of the Calibration Tool and Performance of the Kirigami-Inspired Sponge Sensor
4.3. Advantages and Limitations of the Kirigami-Inspired Flexible Sensors
4.4. Future Development of the Kirigami-Inspired Sponge Sensor
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PCC | Piecewise Constant Curvature |
CC | Constant Curvature |
PIP | Proximal Interphalangeal |
MCP | Metacarpophalangeal |
LSTM | Long Short-term Memory |
RNN | Recurrent Neural Network |
IMU | Inertial Measurement Unit |
References
- Rus, D.; Tolley, M.T. Design, fabrication and control of soft robots. Nature 2015, 521, 467–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majidi, C.; Kramer, R.; Wood, R. A non-differential elastomer curvature sensor for softer-than-skin electronics. Smart Mater. Struct. 2011, 20, 105017. [Google Scholar] [CrossRef]
- Vogt, D.M.; Park, Y.L.; Wood, R.J. Design and characterization of a soft multi-axis force sensor using embedded microfluidic channels. IEEE Sens. J. 2013, 13, 4056–4064. [Google Scholar] [CrossRef] [Green Version]
- Thuruthel, T.G.; Shih, B.; Laschi, C.; Tolley, M.T. Soft robot perception using embedded soft sensors and recurrent neural networks. Sci. Robot. 2019, 4, eaav1488. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Kim, S.H.; Jin, S.; Kim, S.; Lee, S.; Kim, J.S.; Park, J.M.; Cha, Y. Pneumatic actuator and flexible piezoelectric sensor for soft virtual reality glove system. Sci. Rep. 2019, 9, 1–8. [Google Scholar]
- Yan, X.; Bowen, C.R.; Yuan, C.; Hao, Z.; Pan, M. Carbon fibre based flexible piezoresistive composites to empower inherent sensing capabilities for soft actuators. Soft Matter 2019, 15, 8001–8011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, Z.; Zhou, W.; Chen, X.; Chen, J.; Xie, S. Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Adv. Mater. 2015, 27, 6002–6008. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Lee, S.; Hong, T.; Shin, G.; Kim, T.; Park, Y.L. Heterogeneous sensing in a multifunctional soft sensor for human-robot interfaces. Sci. Robot. 2020, 5, eabc6878. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Ge, J.; Patel, J.H.; Fok, M.P. Dual-layer orthogonal fiber Bragg grating mesh based soft sensor for 3-dimensional shape sensing. Opt. Express 2017, 25, 24727–24734. [Google Scholar] [CrossRef] [PubMed]
- Devaraj, H.; Yellapantula, K.; Stratta, M.; McDaid, A.; Aw, K. Embedded piezoresistive pressure sensitive pillars from piezoresistive carbon black composites towards a soft large-strain compressive load sensor. Sens. Actuators A Phys. 2019, 285, 645–651. [Google Scholar] [CrossRef]
- Vella, D. Buffering by buckling as a route for elastic deformation. Nat. Rev. Phys. 2019, 1, 425–436. [Google Scholar] [CrossRef]
- Wu, S.; Peng, S.; Yu, Y.; Wang, C.H. Strategies for designing stretchable strain sensors and conductors. Adv. Mater. Technol. 2020, 5, 1900908. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Li, X.; Fan, J.A.; Xu, S.; Song, Y.M.; Choi, K.J.; Yeo, W.H.; Lee, W.; Nazaar, S.N.; et al. Experimental and theoretical studies of serpentine microstructures bonded to prestrained elastomers for stretchable electronics. Adv. Funct. Mater. 2014, 24, 2028–2037. [Google Scholar] [CrossRef]
- Kim, D.H.; Lu, N.; Ma, R.; Kim, Y.S.; Kim, R.H.; Wang, S.; Wu, J.; Won, S.M.; Tao, H.; Islam, A.; et al. Epidermal electronics. Science 2011, 333, 838–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.H.; Liu, Z.; Kim, Y.S.; Wu, J.; Song, J.; Kim, H.S.; Huang, Y.; Hwang, K.c.; Zhang, Y.; Rogers, J.A. Optimized structural designs for stretchable silicon integrated circuits. Small 2009, 5, 2841–2847. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; He, X.; Li, Y.; Zhang, L.; Li, Z.; Ji, C.; Shi, E.; Li, P.; Zhu, K.; Peng, Q.; et al. Super-stretchable spring-like carbon nanotube ropes. Adv. Mater. 2012, 24, 2896–2900. [Google Scholar] [CrossRef] [PubMed]
- Son, W.; Chun, S.; Lee, J.M.; Lee, Y.; Park, J.; Suh, D.; Lee, D.W.; Jung, H.; Kim, Y.J.; Kim, Y.; et al. Highly twisted supercoils for superelastic multi-functional fibres. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, S.; Choe, A.; Park, J.; Kim, H.; GonáSon, J.; Lee, S.-S.; Park , M.; Ko, H. Directed self-assembly of rhombic carbon nanotube nanomesh films for transparent and stretchable electrodes. J. Mater. Chem. C 2015, 3, 2319–2325. [Google Scholar]
- Ma, J.; Wang, P.; Chen, H.; Bao, S.; Chen, W.; Lu, H. Highly sensitive and large-range strain sensor with a self-compensated two-order structure for human motion detection. ACS Appl. Mater. Interfaces 2019, 11, 8527–8536. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, B.; Yang, L.; Zhang, W.; Farrow, I.; Scarpa, F.; Rossiter, J. Kirigami stretchable strain sensors with enhanced piezoelectricity induced by topological electrodes. Appl. Phys. Lett. 2018, 112, 251904. [Google Scholar] [CrossRef]
- Shyu, T.C.; Damasceno, P.F.; Dodd, P.M.; Lamoureux, A.; Xu, L.; Shlian, M.; Shtein, M.; Glotzer, S.C.; Kotov, N.A. A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nat. Mater. 2015, 14, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truby, R.L.; Della Santina, C.; Rus, D. Distributed Proprioception of 3D Configuration in Soft, Sensorized Robots via Deep Learning. IEEE Robot. Autom. Lett. 2020, 5, 3299–3306. [Google Scholar] [CrossRef]
- Shu, J.; Wang, J.; Su, Y.; Liu, H.; Li, Z.; Tong, R.K.Y. An End-to-end Posture Perception Method for Soft Bending Actuators Based on Kirigami-inspired Piezoresistive Sensors. In Proceedings of the 2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN) (IEEE BSN 2022), Ioannina, Greece, 27–30 September 2022. [Google Scholar]
- Morikawa, Y.; Yamagiwa, S.; Sawahata, H.; Numano, R.; Koida, K.; Kawano, T. Donut-shaped stretchable kirigami: Enabling electronics to integrate with the deformable muscle. Adv. Healthc. Mater. 2019, 8, 1900939. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, Z.; Liu, P.; Guo, X. Laser-induced porous graphene on Polyimide/PDMS composites and its kirigami-inspired strain sensor. Theor. Appl. Mech. Lett. 2021, 11, 100240. [Google Scholar] [CrossRef]
- Lv, Z.; Luo, Y.; Tang, Y.; Wei, J.; Zhu, Z.; Zhou, X.; Li, W.; Zeng, Y.; Zhang, W.; Zhang, Y.; et al. Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite. Adv. Mater. 2018, 30, 1704531. [Google Scholar] [CrossRef]
- Park, J.; Wang, S.; Li, M.; Ahn, C.; Hyun, J.K.; Kim, D.S.; Kim, D.K.; Rogers, J.A.; Huang, Y.; Jeon, S. Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors. Nat. Commun. 2012, 3, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Zhang, L.; Duan, S.; Jing, S.; Jiang, H.; Li, C. Highly stretchable conductors integrated with a conductive carbon nanotube/graphene network and 3D porous poly (dimethylsiloxane). Adv. Funct. Mater. 2014, 24, 7548–7556. [Google Scholar] [CrossRef]
- Duan, S.; Yang, K.; Wang, Z.; Chen, M.; Zhang, L.; Zhang, H.; Li, C. Fabrication of highly stretchable conductors based on 3D printed porous poly (dimethylsiloxane) and conductive carbon nanotubes/graphene network. ACS Appl. Mater. Interfaces 2016, 8, 2187–2192. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Su, Z.; Song, Y.; Cheng, X.; Chen, X.; Meng, B.; Song, Z.; Chen, D.; Zhang, H. Omnidirectional bending and pressure sensor based on stretchable CNT-PU sponge. Adv. Funct. Mater. 2017, 27, 1604434. [Google Scholar] [CrossRef]
- Han, S.; Kim, T.; Kim, D.; Park, Y.L.; Jo, S. Use of deep learning for characterization of microfluidic soft sensors. IEEE Robot. Autom. Lett. 2018, 3, 873–880. [Google Scholar] [CrossRef]
- Elgeneidy, K.; Lohse, N.; Jackson, M. Bending angle prediction and control of soft pneumatic actuators with embedded flex sensors–a data-driven approach. Mechatronics 2018, 50, 234–247. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.H.; Li, S.; Luo, X. Obstacle avoidance and tracking control of redundant robotic manipulator: An RNN-based Metaheuristic approach. IEEE Trans. Ind. Inform. 2019, 16, 4670–4680. [Google Scholar]
- Park, H.; Lee, H.; Park, K.; Mo, S.; Kim, J. Deep Neural Network Approach in Electrical Impedance Tomography-based Real-time Soft Tactile Sensor. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Venetian Macao, Macau, 3–8 November 2019; pp. 7447–7452. [Google Scholar]
- Chin, K.; Hellebrekers, T.; Majidi, C. Machine learning for soft robotic sensing and control. Adv. Intell. Syst. 2020, 2, 1900171. [Google Scholar] [CrossRef]
- Rus, D.; Tolley, M.T. Design, fabrication and control of origami robots. Nat. Rev. Mater. 2018, 3, 101–112. [Google Scholar] [CrossRef]
- Zuliani, F.; Liu, C.; Paik, J.; Felton, S.M. Minimally actuated transformation of origami machines. IEEE Robot. Autom. Lett. 2018, 3, 1426–1433. [Google Scholar] [CrossRef]
- Shu, J.; Chirarattananon, P. A quadrotor with an origami-inspired protective mechanism. IEEE Robot. Autom. Lett. 2019, 4, 3820–3827. [Google Scholar] [CrossRef] [Green Version]
- Heung, K.H.; Tong, R.K.; Lau, A.T.; Li, Z. Robotic glove with soft-elastic composite actuators for assisting activities of daily living. Soft Robot. 2019, 6, 289–304. [Google Scholar] [CrossRef] [PubMed]
- Polygerinos, P.; Wang, Z.; Galloway, K.C.; Wood, R.J.; Walsh, C.J. Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 2015, 73, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Szurgott, P.; Jarzębski, Ł. Selection of a hyper-elastic material model-a case study for a polyurethane component. Lat. Am. J. Solids Struct. 2019, 16. [Google Scholar] [CrossRef]
- Qu, C.; Hu, J.; Liu, X.; Li, Z.; Ding, Y. Morphology and mechanical properties of polyimide films: The effects of UV irradiation on microscale surface. Materials 2017, 10, 1329. [Google Scholar] [CrossRef] [PubMed]
C10/MPa | C20/MPa | C30/MPa |
---|---|---|
3.76949 | −0.415479 | 0.0289463 |
RMSE (Degree) | Coefficient of Determination () | |
---|---|---|
Two Units Structure | 7.21 | 0.91 |
Three Units Structure | 3.85 | 0.97 |
Four Units Structure | 5.20 | 0.95 |
MCP Joint Angle | RMSE (Degree) | Coefficient of Determination () |
---|---|---|
Two Units Structure | 5.89 | 0.76 |
Three Units Structure | 2.73 | 0.95 |
Four Units Structure | 3.29 | 0.95 |
PIP Joint Angle | RMSE (Degree) | Coefficient of Determination () |
Two Units Structure | 3.21 | 0.87 |
Three Units Structure | 2.51 | 0.93 |
Four Units Structure | 3.85 | 0.85 |
Sensing Materials | Kirigami Patterns | Overall Bending Angle/Degree | Resistive Torque (mNm) | Resistive Torque Reduction (%) |
---|---|---|---|---|
Conductive Sponge | Two Units Structure | 45 | 2.40 | 76.56 |
90 | 8.32 | 45.26 | ||
Three Units Structure | 45 | 1.60 | 61.54 | |
90 | 2.24 | 68.18 | ||
Four Units Structure | 45 | 0.48 | 70.00 | |
90 | 0.96 | 70.00 | ||
Conductive Silicon | Two Units Structure | 45 | 10.24 | - |
90 | 15.20 | - | ||
Three Units Structure | 45 | 4.16 | - | |
90 | 7.04 | - | ||
Four Units Structure | 45 | 1.60 | - | |
90 | 3.20 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, J.; Wang, J.; Lau, S.C.Y.; Su, Y.; Heung, K.H.L.; Shi, X.; Li, Z.; Tong, R.K.-y. Soft Robots’ Dynamic Posture Perception Using Kirigami-Inspired Flexible Sensors with Porous Structures and Long Short-Term Memory (LSTM) Neural Networks. Sensors 2022, 22, 7705. https://doi.org/10.3390/s22207705
Shu J, Wang J, Lau SCY, Su Y, Heung KHL, Shi X, Li Z, Tong RK-y. Soft Robots’ Dynamic Posture Perception Using Kirigami-Inspired Flexible Sensors with Porous Structures and Long Short-Term Memory (LSTM) Neural Networks. Sensors. 2022; 22(20):7705. https://doi.org/10.3390/s22207705
Chicago/Turabian StyleShu, Jing, Junming Wang, Sanders Cheuk Yin Lau, Yujie Su, Kelvin Ho Lam Heung, Xiangqian Shi, Zheng Li, and Raymond Kai-yu Tong. 2022. "Soft Robots’ Dynamic Posture Perception Using Kirigami-Inspired Flexible Sensors with Porous Structures and Long Short-Term Memory (LSTM) Neural Networks" Sensors 22, no. 20: 7705. https://doi.org/10.3390/s22207705
APA StyleShu, J., Wang, J., Lau, S. C. Y., Su, Y., Heung, K. H. L., Shi, X., Li, Z., & Tong, R. K.-y. (2022). Soft Robots’ Dynamic Posture Perception Using Kirigami-Inspired Flexible Sensors with Porous Structures and Long Short-Term Memory (LSTM) Neural Networks. Sensors, 22(20), 7705. https://doi.org/10.3390/s22207705