Skin Lesion Classification on Imbalanced Data Using Deep Learning with Soft Attention
<p>Example image of each class.</p> "> Figure 2
<p>Overall model architecture.</p> "> Figure 3
<p>Proposed backbone model architecture. This figure show the overall structure of the backbone model (non mobile-based model) including DenseNet201, InceptionResNetV2, ResNet50, ResNet152, and NasNetLarge with Soft-Attention. The detailed structure and information can be found in the <a href="#sensors-22-07530-t0A1" class="html-table">Table A1</a> in <a href="#app1-sensors-22-07530" class="html-app">Appendix A</a>.</p> "> Figure 4
<p>Mobile-based backbone model architecture. This figure shows the overall structure of the mobile-based backbone model including MobileNetV2, MobileNetV3Small, MobileNetV3Large, and NasNetMobile. The detailed structure and information can be found in the <a href="#sensors-22-07530-t0A2" class="html-table">Table A2</a> in <a href="#app2-sensors-22-07530" class="html-app">Appendix B</a>.</p> "> Figure 5
<p>Input schema.</p> "> Figure 6
<p>Soft-Attention layer.</p> "> Figure 7
<p>Soft-Attention module.</p> "> Figure 8
<p>Confusion matrix.</p> "> Figure 9
<p>Area under the curve.</p> "> Figure 10
<p>DenseNet201 confusion matrix.</p> "> Figure 11
<p>InceptionResNetV2 confusion matrix.</p> "> Figure 12
<p>The comparison between F1-scores of DenseNet201 trained with augmented data and the one trained with metadata and weight loss.</p> "> Figure 13
<p>The comparison between F1-scores of InceptionResNetV2 trained with augmented data and the one trained with metadata and weight loss.</p> "> Figure 14
<p>The comparison between recall of DenseNet201 trained with augmented data and the one trained with metadata and weight loss.</p> "> Figure 15
<p>Comparison between recall of InceptionResNetV2 trained with augmented data and the one trained with metadata and weight loss.</p> "> Figure 16
<p>ROC of DenseNet201 and InceptionResNetV2.</p> "> Figure 17
<p>Model ability to classify melanoma and nevus.</p> ">
Abstract
:1. Introduction
1.1. Problem Statement
1.2. Related Works
1.2.1. Deep Learning Approach
1.2.2. Machine Learning Approach
1.3. Proposed Method
- -
- Backbone model including DenseNet201, InceptionResNetV2, ResNet50/152, NasNetLarge, NasNetMobile, and MobileNetV2/V3;
- -
- Using metadata including age, gender, localization as another input of the model;
- -
- Using Soft-Attention as a feature extractor of the model;
- -
- A new weight loss function.
2. Materials and Methods
2.1. Materials
2.1.1. Image Data
2.1.2. Metadata
2.2. Methodology
2.2.1. Overall Architecture
2.2.2. Input Schema
2.2.3. Backbone Model
2.2.4. Soft-Attention Module
2.2.5. Loss Function
3. Results
3.1. Experimental Setup
3.1.1. Training
- -
- Rotation range: rotate the image in an angle range of 180.
- -
- Width and height shift range: Shift the image horizontally and vertically in a range of 0.1, respectively.
- -
- Zoom range: Zoom in or zoom out the image in a range of 0.1 to create new image.
- -
- Horizontal and vertical flipping: Flipping the image horizontally and vertically to create a new image.
3.1.2. Tools
3.1.3. Evaluation Metrics
3.2. Discussion
Model | ACC (AD) | ACC (MD) |
---|---|---|
InceptionResNetV2 | 0.79 | 0.90 |
DenseNet201 | 0.84 | 0.89 |
ResNet50 | 0.76 | 0.70 |
ResNet152 | 0.81 | 0.57 |
NasNetLarge | 0.56 | 0.84 |
MobileNetV2 | 0.83 | 0.81 |
MobileNetV3Small | 0.83 | 0.78 |
MobileNetV3Large | 0.85 | 0.86 |
NasNetMobile | 0.84 | 0.86 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAD | Computer-aided diagnosis |
AI | Artificial Intelligence |
AKIEC | Actinic keratoses and intraepithelial carcinoma or Bowen’s disease |
BCC | Basal Cell Carcinoma |
BKL | Benign Keratosis-like Lesions |
DF | Dermatofibroma |
MEL | Melanoma |
NV | Melanocytic Nevi |
VASC | Vascular Lesions |
HISTO | Histopathology |
FOLLOWUP | Follow-up examination |
CONSENSUS | Expert Consensus |
CONFOCAL | Confocal Microscopy |
RGB | Red Green Blue |
BGR | Blue Green Red |
TP | True Positives |
FN | False Negatives |
TN | True Negatives |
FP | False Positives |
Sens | Sensitivity |
Spec | Specificity |
AUC | Area Under the Curve |
ROC | Receiver Operating Curve |
Appendix A. Detailed Model Structure
DenseNet-201 | DenseNet-201 + SA | Inception-ResNetV2 | Inception-ResNetV2 + SA | ResNet-50 | ResNet-50 + SA | ResNet-152 | ResNet-152 + SA | NasNet-Large | NasNet-Large + SA |
---|---|---|---|---|---|---|---|---|---|
Conv2D | Conv2D | STEM | STEM | Conv2D | Conv2D | Conv2D | Conv2D | Conv2D | Conv2D |
Pooling | Pooling | Pooling | Pooling | Pooling | Pooling | Pooling | Pooling | ||
DenseBlock × 6 | DenseBlock × 6 | Inception ResNet A × 10 | Inception ResNet A × 10 | Residual Block × 3 | Residual Block × 3 | Residual Block × 3 | Residual Block × 3 | Reduction Cell × 2 | Reduction Cell × 2 |
Conv2D | Conv2D | Reduction A | Reduction A | Normal Cell × N | Normal Cell × N | ||||
Average pool | Average pool | ||||||||
DenseBlock × 12 | DenseBlock × 12 | Inception ResNet B × 20 | Inception ResNet B × 20 | Residual Block × 4 | Residual Block × 4 | Residual Block × 8 | Residual Block × 8 | Reduction Cell | Reduction Cell |
Conv2D | Conv2D | Reduction B | Reduction B | Normal Cell × N | Normal Cell × N | ||||
Average pool | Average pool | ||||||||
DenseBlock × 48 | DenseBlock × 12 | Inception ResNet C × 5 | Inception ResNet C × 5 | Residual Block × 6 | Residual Block × 6 | Residual Block × 36 | Residual Block × 36 | Reduction Cell | Reduction Cell |
Conv2D | Conv2D | Normal Cell × N | Normal Cell × N-2 | ||||||
Average pool | Average pool | ||||||||
DenseBlock × 29 | DenseBlock × 29 | Residual Block × 3 | Residual Block × 3 | ||||||
DenseBlock × 3 | SA Module | SA Module | SA Module | SA Module | SA Module | ||||
GAP | Average pool | GAP | GAP | ||||||
FC 1000D | Dropout (0.8) | FC 1000D | FC 1000D | ||||||
SoftMax | SoftMax | SoftMax | SoftMax | SoftMax | SoftMax | SoftMax | SoftMax | SoftMax | SoftMax |
Appendix B. Detailed Mobile-based Model Structure
MobileNetV2 | MobileNetV2 + SA | MobileNetV3 Small | MobileNetV3 Small + SA | MobileNetV3 Large | MobileNetV3 Large + SA | NasNet Mobile | NasNetMobile + SA |
---|---|---|---|---|---|---|---|
Conv2D | Conv2D | Conv2D | Conv2D | Conv2D | Conv2D | Normal Cell | Normal Cell |
bottleneck | bottleneck | bottleneck SE | bottleneck SE | bottleneck 3 repeated | bottleneck 3 repeated | Reduction Cell | Reduction Cell |
bottleneck 2 repeated | bottleneck 2 repeated | bottleneck | bottleneck | bottleneck SE 3 repeated | bottleneck SE 3 repeated | Normal Cell | Normal Cell |
bottleneck 3 repeated | bottleneck 3 repeated | bottleneck SE 8 repeated | bottleneck SE 8 repeated | bottleneck 4 repeated | bottleneck 4 repeated | Reduction Cell | Reduction Cell |
bottleneck 4 repeated | bottleneck 4 repeated | bottleneck SE 2 repeated | bottleneck SE 2 repeated | Normal Cell | |||
bottleneck 3 repeated | bottleneck 3 repeated | bottleneck SE 3 repeated | bottleneck SE 3 repeated | ||||
bottleneck 3 repeated | bottleneck | ||||||
bottleneck | |||||||
Conv2D | Conv2D SE | Conv2D SE | Conv2D | Conv2D | |||
AP | Pool | Pool | Pool | Pool | |||
Conv2D | SA Module | Conv2D 2 repeated | SA Module | Conv2D 2 repeated | SA Module | SA Module | |
Softmax | Softmax | Softmax | Softmax | Softmax | Softmax | Softmax | Softmax |
Appendix C. Detailed Model Performance
Appendix C.1. F1-Score Model Performance
Model | akiec | bcc | bkl | df | mel | nv | vasc | Mean |
---|---|---|---|---|---|---|---|---|
DenseNet201 with Augmented Data | 0.56 | 0.75 | 0.64 | 0.62 | 0.60 | 0.93 | 0.85 | 0.70 |
InceptionResNetV2 with Augmented Data | 0.42 | 0.63 | 0.51 | 0.35 | 0.57 | 0.9 | 0.7 | 0.58 |
Resnet50 with Augmented Data | 0.39 | 0.59 | 0.42 | 0.6 | 0.42 | 0.88 | 0.79 | 0.58 |
VGG16 with Augmented Data | 0.35 | 0.62 | 0.42 | 0.32 | 0.47 | 0.89 | 0.77 | 0.54 |
DenseNet201 with Metadata and WeightLoss | 0.84 | 0.77 | 0.81 | 0.83 | 0.69 | 0.94 | 0.97 | 0.83 |
InceptionResNetV2 with Metadata and WeightLoss | 0.77 | 0.83 | 0.83 | 0.64 | 0.75 | 0.94 | 0.7 | 0.81 |
Resnet50 with Metadata and WeightLoss | 0.49 | 0.59 | 0.55 | 0.36 | 0.45 | 0.83 | 0.8 | 0.58 |
Resnet152 with Metadata and WeightLoss | 0.42 | 0.38 | 0.41 | 0.15 | 0.4 | 0.75 | 0.75 | 0.46 |
NasNetLarge with Metadata and WeightLoss | 0.79 | 0.79 | 0.8 | 0.74 | 0.65 | 0.92 | 0.92 | 0.80 |
MobileNetV2 with Metadata and WeightLoss | 0.68 | 0.79 | 0.66 | 0.78 | 0.54 | 0.9 | 0.9 | 0.75 |
MobileNetV3Large with Metadata and WeightLoss | 0.72 | 0.76 | 0.75 | 0.92 | 0.58 | 0.92 | 0.92 | 0.79 |
MobileNetV3Small with Metadata and WeightLoss | 0.6 | 0.72 | 0.61 | 0.75 | 0.47 | 0.89 | 0.89 | 0.70 |
NasNetMobile with Metadata and WeightLoss | 0.76 | 0.74 | 0.78 | 0.73 | 0.63 | 0.93 | 0.93 | 0.78 |
Appendix C.2. Recall Model Performance
Model | akiec | bcc | bkl | df | mel | nv | vasc | Mean |
---|---|---|---|---|---|---|---|---|
DenseNet201 with Augmented Data | 0.65 | 0.75 | 0.59 | 0.53 | 0.54 | 0.93 | 0.85 | 0.69 |
InceptionResNetV2 with Augmented Data | 0.37 | 0.60 | 0.55 | 0.24 | 0.59 | 0.9 | 0.67 | 0.56 |
Resnet50 with Augmented Data | 0.33 | 0.56 | 0.38 | 0.53 | 0.40 | 0.92 | 0.81 | 0.56 |
VGG16 with Augmented Data | 0.31 | 0.66 | 0.37 | 0.24 | 0.40 | 0.94 | 0.71 | 0.51 |
DenseNet201 with Metadata and WeightLoss | 0.85 | 0.75 | 0.78 | 0.83 | 0.63 | 0.96 | 1 | 0.82 |
InceptionResNetV2 with Metadata and WeightLoss | 0.82 | 0.84 | 0.81 | 0.67 | 0.7 | 0.95 | 0.93 | 0.81 |
Resnet50 with Metadata and WeightLoss | 0.67 | 0.63 | 0.54 | 0.83 | 0.63 | 0.74 | 0.86 | 0.70 |
Resnet152 with Metadata and WeightLoss | 0.51 | 0.49 | 0.35 | 0.76 | 0.47 | 0.63 | 0.48 | 0.52 |
NasNetLarge with Metadata and WeightLoss | 0.73 | 0.71 | 0.83 | 0.92 | 0.59 | 0.9 | 0.93 | 0.81 |
MobileNetV2 with Metadata and WeightLoss | 0.7 | 0.86 | 0.72 | 0.75 | 0.58 | 0.86 | 1 | 0.78 |
MobileNetV3Large with Metadata and WeightLoss | 0.72 | 0.76 | 0.75 | 0.92 | 0.58 | 0.92 | 0.92 | 0.80 |
MobileNetV3Small with Metadata and WeightLoss | 0.76 | 0.84 | 0.68 | 1 | 0.52 | 0.82 | 0.93 | 0.79 |
NasNetMobile with Metadata and WeightLoss | 0.82 | 0.73 | 0.83 | 0.92 | 0.53 | 0.93 | 0.93 | 0.81 |
Appendix C.3. Detailed Mobile Model Performance
References
- Datta, S.K.; Shaikh, M.A.; Srihari, S.N.; Gao, M. Soft-Attention Improves Skin Cancer Classification Performance. In Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Goyal, M.; Knackstedt, T.; Yan, S.; Hassanpour, S. Artificial Intelligence-Based Image Classification for Diagnosis of Skin Cancer: Challenges and Opportunities. Comput. Biol. Med. 2020, 127, 104065. [Google Scholar] [CrossRef]
- Poduval, P.; Loya, H.; Sethi, A. Functional Space Variational Inference for Uncertainty Estimation in Computer Aided Diagnosis. arXiv 2020, arXiv:2005.11797. [Google Scholar]
- Gao, H.; Zhuang, L.; Kilian, Q. Weinberger: Densely Connected Convolutional Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. In Proceedings of the AAAI Conference, New Orleans, LO, USA, 2–7 February 2018. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for MobileNetV3. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019. [Google Scholar]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning Transferable Architectures for Scalable Image Recognition. In Proceedings of the IEEE Conference on Computer Vision andPattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Garg, R.; Maheshwari, S.; Shukla, A. Decision Support System for Detection and Classification of Skin Cancer using CNN. In Innovations in Computational Intelligence and Computer Vision; Springer: Singapore, 2019. [Google Scholar]
- Rezvantalab, A.; Safigholi, H.; Karimijeshni, S. Dermatologist Level Dermoscopy Skin Cancer Classification Using Different Deep Learning Convolutional Neural Networks Algorithms. arXiv 2021, arXiv:1810.10348. [Google Scholar]
- Nadipineni, H. Method to Classify Skin Lesions using Dermoscopic images. arXiv 2020, arXiv:2008.09418. [Google Scholar]
- Yao, P.; Shen, S.; Xu, M.; Liu, P.; Zhang, F.; Xing, J.; Shao, P.; Kaffenberger, B.; Xu, R.X. Single Model Deep Learning on Imbalanced Small Datasets for Skin Lesion Classification. IEEE Trans. Med. Imaging 2022, 41, 1242–1254. [Google Scholar] [CrossRef] [PubMed]
- Young, K.; Booth, G.; Simpson, B.; Dutton, R.; Shrapnel, S. Dermatologist Level Dermoscopy Deep neural network or dermatologist? Nature 2021, 542, 115–118. [Google Scholar]
- Xing, X.; Hou, Y.; Li, H.; Yuan, Y.; Li, H.; Meng, M.Q.H. Categorical Relation-Preserving Contrastive Knowledge Distillation for Medical Image Classification. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Mahbod, A.; Tsch, L.P.; Langs, G.; Ecker, R.; Ellinger, I. The Effects of Skin Lesion Segmentation on the Performance of Dermatoscopic Image Classification. Comput. Methods Programs Biomed. 2020, 197, 105725. [Google Scholar] [CrossRef]
- Lee, Y.C.; Jung, S.H.; Won, H.H. WonDerM: Skin Lesion Classification with Fine-tuned Neural Networks. arXiv 2019, arXiv:1808.03426. [Google Scholar]
- Gessert, N.; Nielsen, M.; Shaikh, M.; Werner, R.; Schlaefer, A. Skin Lesion Classification Using Ensembles of Multi-Resolution EfficientNets with Meta Data. MethodsX 2020, 7, 100864. [Google Scholar] [CrossRef]
- Alberti, M.; Botros, A.; Schutz, N.; Ingold, R.; Liwicki, M.; Seuret, M. Trainable Spectrally Initializable Matrix Transformations in Convolutional Neural Networks. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021. [Google Scholar]
- Abayomi-Alli, O.O.; Damasevicius, R.; Misra, S.; Maskeliunas, R.; Abayomi-Alli, A. Malignant skin melanoma detection using image augmentation by oversamplingin nonlinear lower-dimensional embedding manifold. Turk. J. Electr. Eng. Comput. Sci. 2021, 29, 2600–2614. [Google Scholar] [CrossRef]
- Nawaz, M.; Nazir, T.; Masood, M.; Ali, F.; Khan, M.A.; Tariq, U.; Sahar, N. Robertas Damaševicius Melanoma segmentation: A framework of improved DenseNet77 and UNET convolutional neural network. Int. J. Imaging Syst. Technol. 2022. [Google Scholar] [CrossRef]
- Kadry, S.; Taniar, D.; Damaševičius, R.; Rajinikanth, V.; Lawal, I.A. Extraction of abnormal skin lesion from dermoscopy image using VGG-SegNet. In Proceedings of the 2021 Seventh International conference on Bio Signals, Images, and Instrumentation (ICBSII), Chennai, India, 25–27 March 2021. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2016, arXiv:1409.1556. [Google Scholar]
- Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2019, arXiv:1905.11946. [Google Scholar]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- DeVries, T.; Taylor, G.W. Improved Regularization of Convolutional Neural Networks with Cutout. arXiv 2017, arXiv:1708.04552. [Google Scholar]
- Li, X.; Lu, Y.; Desrosiers, C.; Liu, X. Out-of-Distribution Detection for Skin Lesion Images with Deep Isolation Forest. In International Workshop on Machine Learning in Medical Imaging; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Tsch, L.P.; Rosendahl, C.; Kittler, H. The HAM10000 data set, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 2018, 5, 1–9. [Google Scholar]
- Fekri-Ershad, S.; Saberi, M.; Tajeripour, F. An innovative skin detection approach using color based image retrieval technique. arXiv 2012, arXiv:1207.1551. [Google Scholar] [CrossRef]
- Fred, A. Agarap Deep Learning using Rectified Linear Units (ReLU). arXiv 2019, arXiv:1803.08375. [Google Scholar]
- Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; Bengio, Y. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 7–9 July 2015; 2015. [Google Scholar]
- Shaikh, M.A.; Duan, T.; Chauhan, M.; Srihari, S.N. Attention based writer independent verification. In Proceedings of the 2020 17th International Conference on Frontiers in Handwriting Recognition, Dortmund, Germany, 8–10 September 2020. [Google Scholar]
- Tomita, N.; Abdollahi, B.; Wei, J.; Ren, B.; Suriawinata, A.; Hassanpour, S. Attention-Based Deep Neural Networks for Detection of Cancerous and Precancerous Esophagus Tissue on Histopathological Slides. JAMA Netw. 2020, 2, e1914645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, Y.; Wookey, S. The Real-World-Weight Cross-Entropy Loss Function: Modeling the Costs of Mislabeling. IEEE Access 2020, 8, 4806–4813. [Google Scholar] [CrossRef]
- King, G.; Zeng, L. Logistic Regression in Rare Events Data. Political Anal. 2001, 9, 137–163. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar]
Work | Deep Learning | Machine Learning | Data Augmentation | Feature Extractor | Data Set | Result |
---|---|---|---|---|---|---|
[1] | Classify | x | HAM10000 | 0.93 (ACC) | ||
[14] | Classify | Classify | x | x | HAM10000 | 0.9 (ACC) |
[15] | Classify | Classify | x | HAM10000, PH2 | ||
[16] | Classify | x | HAM10000 | 0.88 (ACC) | ||
[17] | Classify | x | HAM10000 | 0.86 (ACC) | ||
[18] | Classify | x | x | HAM10000, BCN-20000, MSK | 0.85 (ACC) | |
[19] | Classify | x | HAM10000 | 0.85 (ACC) | ||
[20] | Classify | x | HAM10000 | 0.92 (AUC) | ||
[21] | Classify | x | HAM10000 | 0.92 (AUC) | ||
[22] | Classify | x | HAM10000 | 0.74 (recall) | ||
[23] | Classify | x | x | HAM10000 | ||
[24] | Classify | x | HAM10000 | 0.92 (ACC) | ||
[25] | Seg | HAM10000 | 0.99 (ACC) | |||
[26] | Seg | HAM10000 | 0.97 (ACC) |
Class | AKIEC | BCC | BKL | DF | MEL | NV | VASC | Total |
---|---|---|---|---|---|---|---|---|
No. Sample | 327 | 514 | 1099 | 115 | 1113 | 6705 | 142 | 10,015 |
ID | Age | Gender | Local |
---|---|---|---|
ISIC-00001 | 15 | Male | back |
ISIC-00002 | 85 | Female | elbow |
Model | Size (MB) | No. Trainable Parameters | Depth |
---|---|---|---|
Resnet50 | 98 | 25,583,592 | 107 |
Resnet152 | 232 | 60,268,520 | 311 |
DenseNet201 | 80 | 20,013,928 | 402 |
InceptionResNetV2 | 215 | 55,813,192 | 449 |
MobileNetV2 | 14 | 3,504,872 | 105 |
MobileNetV3Small | Unknown | 2,542,856 | 88 |
MobileNetV3Large | Unknown | 5,483,032 | 118 |
NasnetMobile | 23 | 5,289,978 | 308 |
NasnetLarge | 343 | 88,753,150 | 533 |
Model | MobileNetV3Large | DenseNet201 | InceptionResnetV2 |
---|---|---|---|
No. Trainable Parameters | 5,490,039 | 17,382,935 | 47,599,671 |
Depth | 118 | 402 | 449 |
Accuracy | 0.86 | 0.89 | 0.90 |
Training Time (seconds/epoch) | 116 | 1000 | 3500 |
Infer Time (seconds) | 0.13 | 1.16 | 4.08 |
Model | AUC (AD) | AUC (MD) |
---|---|---|
InceptionResNetV2 | 0.971 | 0.99 |
DenseNet201 | 0.93 | 0.99 |
ResNet50 | 0.95 | 0.93 |
ResNet152 | 0.97 | 0.87 |
NasNetLarge | 0.74 | 0.96 |
MobileNetV2 | 0.95 | 0.97 |
MobileNetV3Small | 0.67 | 0.96 |
MobileNetV3Large | 0.96 | 0.97 |
NasNetMobile | 0.96 | 0.97 |
Model | No Weight | Original Loss Accuracy | New Loss Accuracy |
---|---|---|---|
InceptionResNetV2 | 0.74 | 0.79 | 0.90 |
DenseNet201 | 0.81 | 0.84 | 0.89 |
MobileNetV3Large | 0.79 | 0.80 | 0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, V.D.; Bui, N.D.; Do, H.K. Skin Lesion Classification on Imbalanced Data Using Deep Learning with Soft Attention. Sensors 2022, 22, 7530. https://doi.org/10.3390/s22197530
Nguyen VD, Bui ND, Do HK. Skin Lesion Classification on Imbalanced Data Using Deep Learning with Soft Attention. Sensors. 2022; 22(19):7530. https://doi.org/10.3390/s22197530
Chicago/Turabian StyleNguyen, Viet Dung, Ngoc Dung Bui, and Hoang Khoi Do. 2022. "Skin Lesion Classification on Imbalanced Data Using Deep Learning with Soft Attention" Sensors 22, no. 19: 7530. https://doi.org/10.3390/s22197530
APA StyleNguyen, V. D., Bui, N. D., & Do, H. K. (2022). Skin Lesion Classification on Imbalanced Data Using Deep Learning with Soft Attention. Sensors, 22(19), 7530. https://doi.org/10.3390/s22197530