A Sensitive Frequency Range Method Based on Laser Ultrasounds for Micro-Crack Depth Determination
<p>A schematic diagram of signals passing through the crack at different frequencies.</p> "> Figure 2
<p>The transmitted coefficients in the frequency band.</p> "> Figure 3
<p>The relationship between the value of <span class="html-italic">b</span> and the normalized sum.</p> "> Figure 4
<p>(<b>a</b>) Simulation acoustic field; (<b>b</b>) acoustic wave in the time domain; (<b>c</b>) acoustic wave in the frequency domain.</p> "> Figure 5
<p>Transmission coefficients under different depths in the whole frequency range in (<b>a</b>), in the frequency ranging in 0.26 MHz~0.78 MHz and 2.86 MHz~4.95 MHz in (<b>b</b>) and in the frequency ranging in 1.04 MHz~2.60 MHz in (<b>c</b>).</p> "> Figure 6
<p>The frequency spectrum of the transmitted wave with a (<b>a</b>) pulse-rise time of 3 ns, (<b>b</b>) pulse-rise time of 10 ns, (<b>c</b>) laser-source power of 0.5 MW, (<b>d</b>) laser-source power of 0.7 MW, (<b>e</b>) laser-source radius of 80 mm, and (<b>f</b>) laser-source radius of 120 mm at the crack with a depth of 0.08 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, and 0.5 mm.</p> "> Figure 7
<p>Transmission coefficients: (<b>a</b>) pulse-rise time of 3 ns; (<b>b</b>) pulse-rise time of 10 ns; (<b>c</b>) laser-source power of 0.5 MW; (<b>d</b>) laser-source power of 0.7 MW; (<b>e</b>) laser-source radius of 80 mm; (<b>f</b>) laser-source radius of 120 mm.</p> "> Figure 7 Cont.
<p>Transmission coefficients: (<b>a</b>) pulse-rise time of 3 ns; (<b>b</b>) pulse-rise time of 10 ns; (<b>c</b>) laser-source power of 0.5 MW; (<b>d</b>) laser-source power of 0.7 MW; (<b>e</b>) laser-source radius of 80 mm; (<b>f</b>) laser-source radius of 120 mm.</p> "> Figure 8
<p>Schematic diagram of the experimental system.</p> "> Figure 9
<p>Schematic diagram of scanning-laser-source technology device.</p> "> Figure 10
<p>B-scan image.</p> "> Figure 11
<p>Experimental signals: (<b>a</b>) time domain; (<b>b</b>) frequency domain.</p> "> Figure 12
<p>Experimental transmission coefficients.</p> "> Figure 13
<p>Crack-depth normalized parameters in (<b>a</b>) 1.0 MHz–2.6 MHz, (<b>b</b>) 1.0 MHz–2.0 MHz, (<b>c</b>) 1.5 MHz–2.6 MHz, (<b>d</b>) 0.5 MHz–2.6 MHz, and (<b>e</b>) 0.5 MHz–3 MHz.</p> "> Figure 14
<p>Errors of the fitted equations.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Numerical Simulation
3.1. Finite-Element Model
3.2. Analysis of Acoustic Field at the Crack
3.3. The Effect of Excitation Conditions on the Sensitive-Frequency Band
4. Experimental Setup and Result
4.1. Experimental Setup
4.2. The Analysis of Experimental Signals
4.3. The Contrast between the Experimental and Simulated Results
5. Conclusions
- (1)
- The sensitive-frequency range was determined by a low-pass-filter model that was built for analyzing the transmitted interaction between the Rayleigh wave and the surface crack in the frequency domain. An analytic equation based on the sum of transmitted coefficients in the sensitive-frequency range was given to quantitatively measure crack depth.
- (2)
- According to the FEM simulation results under three different excitation conditions of the laser source, it was seen that the proposed detection method in this work had good repeatability and robustness due to the sensitive-frequency range of the transmitted wave having nothing to do with the excitation conditions of the laser source and being related only to crack depth.
- (3)
- The availability of the estimated parameter proposed in this work to evaluate surface-crack depth was validated by using both FEM and the experimental method performed on the micro-surface cracks with depths of 0.08 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, and 0.5 mm, which were less than the wavelength of the Rayleigh wave.
Author Contributions
Funding
Conflicts of Interest
References
- Li, H.; Liu, Y.; Deng, J.; An, Z.; Pan, Q. Depth and Angle Evaluation of Oblique Surface Cracks Using a Support Vector Machine Based on Seven Parameters. Appl. Sci. 2022, 12, 8124. [Google Scholar] [CrossRef]
- Kouraytem, N.; Chiang, P.-J.; Jiang, R.; Kantzos, C.; Pauza, J.; Cunningham, R.; Wu, Z.; Tang, G.; Parab, N.; Zhao, C.; et al. Solidification crack propagation and morphology dependence on processing parameters in AA6061 from ultra-high-speed x-ray visualization. Addit. Manuf. 2021, 42, 101959. [Google Scholar] [CrossRef]
- Kee, S.-H.; Zhu, J. Surface Wave Transmission Measurements across Distributed Surface-Breaking Cracks Using Air-Coupled Sensors. J. Sound Vib. 2011, 330, 5333–5344. [Google Scholar] [CrossRef]
- He, C.; Deng, P.; Lu, Y.; Liu, X.; Liu, Z.; Jiao, J.; Wu, B. Estimation of Surface Crack Depth Using Rayleigh Waves by Electromagnetic Acoustic Transducers. Int. J. Acoust. Vib. 2017, 22, 541–548. [Google Scholar] [CrossRef]
- Chen, K.; Fu, X.; Dorantes-Gonzalez, D.J.; Li, Y.; Wu, S.; Hu, X. Laser-Generated Surface Acoustic Wave Technique for Crack Monitoring—A Review. IJAT 2013, 7, 211–220. [Google Scholar] [CrossRef]
- Chimenti, D.E. Review of Air-Coupled Ultrasonic Materials Characterization. Ultrasonics 2014, 54, 1804–1816. [Google Scholar] [CrossRef]
- Green, R.E. Non-Contact Ultrasonic Techniques. Ultrasonics 2004, 42, 9–16. [Google Scholar] [CrossRef]
- Hellier, C.J. Handbook of Nondestructive Evaluation, 2nd ed.; McGraw-Hill Education: London, UK, 2013; ISBN 978-0-07-177714-8. [Google Scholar]
- Scruby, C.B. Some Applications of Laser Ultrasound. Ultrasonics 1989, 27, 195–209. [Google Scholar] [CrossRef]
- Cooper, J.A.; Crosbie, R.A.; Dewhurst, R.J.; McKie, A.D.; Palmer, S.B. Surface Acoustic Wave Interactions with Cracks and Slots: A Noncontacting Study Using Lasers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1986, 33, 462–470. [Google Scholar] [CrossRef]
- Hévin, G.; Abraham, O.; Pedersen, H.A.; Campillo, M. Characterization of Surface Cracks with Rayleigh Waves: A Numerical Model. NDT E Int. 1998, 31, 289–297. [Google Scholar] [CrossRef]
- Kim, D.-I.; Jung, K.-R.; Jung, Y.-S.; Kim, J.-Y. Detectable Depth of Copper, Steel, and Aluminum Alloy Plates with Pulse-Echo Laser Ultrasonic Propagation Imaging System. Metals 2021, 11, 1607. [Google Scholar] [CrossRef]
- Jian, X.; Dixon, S.; Guo, N.; Edwards, R. Rayleigh Wave Interaction with Surface-Breaking Cracks. J. Appl. Phys. 2007, 101, 064906. [Google Scholar] [CrossRef]
- Moura, A.; Lomonosov, A.M.; Hess, P. Depth Evaluation of Surface-Breaking Cracks Using Laser-Generated Transmitted Rayleigh Waves. J. Appl. Phys. 2008, 103, 084911. [Google Scholar] [CrossRef]
- Li, H.; Pan, Q.; Zhang, X.; An, Z. An Approach to Size Sub-Wavelength Surface Crack Measurements Using Rayleigh Waves Based on Laser Ultrasounds. Sensors 2020, 20, 5077. [Google Scholar] [CrossRef]
- Drain, L.E. Laser Ultrasonics: Techniques and Applications; Routledge: New York, NY, USA, 2019; ISBN 978-0-203-74909-8. [Google Scholar]
- Jian, X.; Fan, Y.; Edwards, R.S.; Dixon, S. Surface-Breaking Crack Gauging with the Use of Laser-Generated Rayleigh Waves. J. Appl. Phys. 2006, 100, 064907. [Google Scholar] [CrossRef]
- Ochiai, M.; Lévesque, D.; Talbot, R.; Blouin, A.; Fukumoto, A.; Monchalin, J.P. Laser Ultrasonic Study of Crack Tip Diffraction. AIP Conf. Proc. 2003, 657, 1489–1496. [Google Scholar] [CrossRef]
- Shan, Q.; Dewhurst, R.J. Surface-breaking Fatigue Crack Detection Using Laser Ultrasound. Appl. Phys. Lett. 1993, 62, 2649–2651. [Google Scholar] [CrossRef]
- Hess, P.; Lomonosov, A.M. Noncontact, Nondestructive Evaluation of Realistic Cracks with Surface Acoustic Waves by Scanning Excitation and Detection Lasers. Int. J. Thermophys. 2013, 34, 1367–1375. [Google Scholar] [CrossRef]
- Masserey, B.; Mazza, E. Ultrasonic Sizing of Short Surface Cracks. Ultrasonics 2007, 46, 195–204. [Google Scholar] [CrossRef]
- Kromine, A.K.; Fomitchov, P.A.; Krishnaswamy, S.; Achenbach, J.D. Scanning Laser Source Technique and its Application to Turbine Disk Inspection. In Review of Progress in Quantitative Nondestructive Evaluation; Springer: Boston, MA, USA, 1999; Volume 18. [Google Scholar] [CrossRef]
- Arias, I.; Achenbach, J.D. A Model for the Ultrasonic Detection of Surface-Breaking Cracks by the Scanning Laser Source Technique. Wave Motion 2004, 39, 61–75. [Google Scholar] [CrossRef]
- Sohn, Y.; Krishnaswamy, S. Interaction of a Scanning Laser-Generated Ultrasonic Line Source with a Surface-Breaking Flaw. J. Acoust. Soc. Am. 2004, 115, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.; Cann, B.; Carroll, D.L.; Fan, Y.; Edwards, R.S. Non-Linear Enhancement of Laser Generated Ultrasonic Rayleigh Waves by Cracks. Nondestruct. Test. Eval. 2008, 23, 25–34. [Google Scholar] [CrossRef]
- Tournat, V.; Ni, C.; Chigarev, N.; Delorme, N.; Shen, Z.; Gusev, V. Probing of Crack Breathing by Pulsed Laser-Generated Acoustic Waves. Proc. Meet. Acoust. 2013, 19, 030081. [Google Scholar] [CrossRef]
- Yang, J.; Li, S.; Wang, Z.; Dong, H.; Wang, J.; Tang, S. Using Deep Learning to Detect Defects in Manufacturing: A Comprehensive Survey and Current Challenges. Materials 2020, 13, 5755. [Google Scholar] [CrossRef]
- Tran, D.Q.; Kim, J.-W.; Tola, K.D.; Kim, W.; Park, S. Artificial Intelligence-Based Bolt Loosening Diagnosis Using Deep Learning Algorithms for Laser Ultrasonic Wave Propagation Data. Sensors 2020, 20, 5329. [Google Scholar] [CrossRef]
- Kot, P.; Muradov, M.; Gkantou, M.; Kamaris, G.S.; Hashim, K.; Yeboah, D. Recent Advancements in Non-Destructive Testing Techniques for Structural Health Monitoring. Appl. Sci. 2021, 11, 2750. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, L.; Ma, J.; Yang, R.; Zhu, Y.; Yang, Y.; Zhang, L. A High-Performance Deep Learning Algorithm for the Automated Optical Inspection of Laser Welding. Appl. Sci. 2020, 10, 933. [Google Scholar] [CrossRef] [Green Version]
Physical Properties | Value |
---|---|
Constant-pressure heat capacity | 900 J/(kg*K) |
Thermal conductivity | 238 W/(m*K) |
Thermal-expansion coefficient | 23 × 10−6 1/K |
Density | 2700 kg/m3 |
Young’s modulus | 70 × 109 Pa |
Poisson’s ratio | 0.33 |
Sample Number | Crack Depth/mm |
---|---|
A | 0.08 |
B | 0.1 |
C | 0.2 |
D | 0.3 |
E | 0.4 |
F | 0.5 |
Experimental-Data Fitted Equation | Simulation-Data Fitted Equation |
---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Jiang, W.; Deng, J.; Yu, R.; Pan, Q. A Sensitive Frequency Range Method Based on Laser Ultrasounds for Micro-Crack Depth Determination. Sensors 2022, 22, 7221. https://doi.org/10.3390/s22197221
Li H, Jiang W, Deng J, Yu R, Pan Q. A Sensitive Frequency Range Method Based on Laser Ultrasounds for Micro-Crack Depth Determination. Sensors. 2022; 22(19):7221. https://doi.org/10.3390/s22197221
Chicago/Turabian StyleLi, Haiyang, Wenxin Jiang, Jin Deng, Ruien Yu, and Qianghua Pan. 2022. "A Sensitive Frequency Range Method Based on Laser Ultrasounds for Micro-Crack Depth Determination" Sensors 22, no. 19: 7221. https://doi.org/10.3390/s22197221
APA StyleLi, H., Jiang, W., Deng, J., Yu, R., & Pan, Q. (2022). A Sensitive Frequency Range Method Based on Laser Ultrasounds for Micro-Crack Depth Determination. Sensors, 22(19), 7221. https://doi.org/10.3390/s22197221