Intelligent Detection of Hazardous Goods Vehicles and Determination of Risk Grade Based on Deep Learning
<p>EfficientDet-D3 deep learning network.</p> "> Figure 2
<p>Vehicle detection diagram.</p> "> Figure 3
<p>Vehicle data set.</p> "> Figure 4
<p>Variation of learning rate parameters.</p> "> Figure 5
<p>Variation trend of total loss value.</p> "> Figure 6
<p>Detection effect of different methods on hazardous goods vehicles. (<b>a</b>,<b>b</b>) Proposed method. (<b>c</b>,<b>d</b>) Cascade R-CNN method. (<b>e</b>,<b>f</b>) CenterNet method. (<b>g</b>,<b>h</b>) EfficientDet-D7x method.</p> "> Figure 7
<p>Detection time of four different methods.</p> "> Figure 8
<p>(<b>a</b>–<b>f</b>) Deep learning vehicle detection model for hazardous goods vehicle detection in different scenarios.</p> "> Figure 9
<p>Four hazardous goods warehouses and ten CCD cameras on ten locations.</p> "> Figure 10
<p>The number of hazardous goods vehicles of different position from Monday to Saturday.</p> "> Figure 11
<p>Total number of hazardous goods vehicles on each location from Monday to Saturday.</p> "> Figure 12
<p>Different risk levels of different locations.</p> ">
Abstract
:1. Introduction
2. Construction of Vehicle Detection Model
3. Experiment Analysis
3.1. Experiment Settings
3.2. Training of the Model
3.3. Ablation Experiments
3.4. Performance Analysis
- (1)
- Comparison of different detection methods for hazardous goods vehicles
- (2)
- Comparison detection of hazardous goods vehicles in different scenarios
4. Case Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arthi, R.; Padmavathi, S.; Amudha, J. Vehicle detection in static images using color and corner map. In Proceedings of the 2010 International Conference on Recent Trends in Information, Telecommunication and Computing, Kerala, India, 12–13 March 2010; pp. 244–246. [Google Scholar]
- Matos, F.; Souza, R. An image vehicle classification method based on edge and PCA applied to blocks. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Seoul, Korea, 14–17 October 2012; pp. 1688–1693. [Google Scholar]
- Iqbal, U.; Zamir, S.W.; Shahid, M.H.; Parwaiz, K.; Yasin, M.; Sarfraz, M.S. Image based vehicle type identification. In Proceedings of the 2010 International Conference on Information and Emerging Technologies, Karachi, Pakistan, 14–16 June 2010; pp. 1–5. [Google Scholar]
- Pei, M.T.; Shen, J.J.; Yang, M.; Jia, Y.D. Vehicle detection method in complex illumination environment. J. Beijing Univ. Technol. 2016, 36, 393–398. [Google Scholar]
- Ghaffarian, S.; Kasar, I. Automatic vehicle detection based on automatic histogram-based fuzzy. J. Appl. Remote Sens. 2016, 10, 12–21. [Google Scholar] [CrossRef]
- Li, Y.; Li, B.; Tian, B.; Yao, Q. Vehicle Detection Based on the AND-OR Graph for Congested Traffic Conditions. IEEE Trans. Intell. Transp. Syst. 2013, 14, 984–993. [Google Scholar] [CrossRef]
- Liu, H.; Liu, T.; Zhang, Z.; Sangaiah, A.K.; Yang, B.; Li, Y. ARHPE: Asymmetric Relation-Aware Representation Learning for Head Pose Estimation in Industrial Human-Computer Interaction. IEEE Trans. Ind. Inf. 2022, 18, 7107–7117. [Google Scholar] [CrossRef]
- Liu, T.; Wang, J.; Yang, B.; Wang, X. NGDNet: Nonuniform Gaussian-label distribution learning for infrared head pose estimation and on-task behavior understanding in the classroom. Neurocomputing 2021, 436, 210–220. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, C.; Li, D.; Shen, X.; Lin, K.; Wang, J.; Zhang, Z.; Zhang, Z.; Xiong, N. EDMF: Efficient Deep Matrix Factorization with Review Feature Learning for Industrial Recommender System. IEEE Trans. Ind. Inf. 2022, 18, 4361–4371. [Google Scholar] [CrossRef]
- Chen, X.; Wu, H.; Lichti, D.; Han, X.; Ban, Y.; Li, P.; Deng, H. Extraction of indoor objects based on the exponential function density clustering model. Inf. Sci. 2022, 607, 1111–1135. [Google Scholar] [CrossRef]
- Shen, X.J.; Zhe, S.; Huang, Y.P.; Wang, Y. Deep convolution neural network parking space occupancy detection algorithm based on nonlocal operation. J. Electron. Inf. 2020, 42, 2269–2276. [Google Scholar]
- Xiang, X.; Lv, N.; Zhai, M.; El Saddik, A. Real-time parking occupancy detection for gas stations based on Haar-AdaBoosting and CNN. IEEE Sens. J. 2017, 17, 6360–6367. [Google Scholar] [CrossRef]
- Tang, T.; Zhou, S.; Deng, Z.; Zou, H.; Lei, L. Vehicle detection in aerial images based on region convolutional neural networks and hard negative example mining. Sensors 2017, 17, 336–352. [Google Scholar] [CrossRef]
- Wang, X.; Shrivastava, A.; Gupta, A. A-fast- RCNN: Hard positive generation via adversary for object detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2606–2615. [Google Scholar]
- Lu, J.; Ma, C.; Li, L.; Xing, X.; Zhang, Y.; Wang, Z.; Xu, J. A vehicle detection method for aerial image based on YOLO. J. Comput. Commun. 2018, 6, 98–107. [Google Scholar] [CrossRef]
- Cao, G.; Xie, X.; Yang, W.; Liao, Q.; Shi, G.; Wu, J. Feature-fused SSD: Fast detection for small objects. In Proceedings of the Ninth International Conference on Graphic and Image Processing, Qingdao, China, 14–16 October 2017; Volume 1. [Google Scholar]
- Liu, H.; Liu, T.; Chen, Y.; Zhang, Z.; Li, Y. EHPE: Skeleton Cues-based Gaussian Coordinate Encoding for Efficient Human Pose Estimation. IEEE Trans. Multimed. 2022, 1–12. [Google Scholar] [CrossRef]
- Liu, T.; Liu, H.; Li, Y.; Chen, Z.; Zhang, Z.; Liu, S. Flexible FTIR Spectral Imaging Enhancement for Industrial Robot Infrared Vision Sensing. IEEE Trans. Ind. Inf. 2020, 16, 544–554. [Google Scholar] [CrossRef]
- Liu, T.; Liu, H.; Li, Y.; Zhang, Z.; Liu, S. Efficient Blind Signal Reconstruction with Wavelet Transforms Regularization for Educational Robot Infrared Vision Sensing. IEEE/ASME Trans. Mechatron. 2019, 24, 384–394. [Google Scholar] [CrossRef]
- Su, H.S.; Long, M.K.; Zeng, Z.G. Controllability of two-time-scale discrete-time multiagent systems. IEEE Trans. Cybern. 2020, 50, 1440–1449. [Google Scholar] [CrossRef]
- Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving into High Quality Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162. [Google Scholar]
- Du, X.; Lin, T.Y.; Jin, P.; Ghiasi, G.; Tan, M.; Cui, Y.; Le, Q.V.; Song, X. SpineNet: Learning Scale-Permuted Backbone for Recognition and Localization. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11589–11598. [Google Scholar]
- Zhou, X.; Wang, D.; Krähenbühl, P. Objects as points. arXiv 2019, arXiv:1904.07850. Available online: http://arxiv.org/abs/1904.07850 (accessed on 25 April 2019).
- Su, H.S.; Liu, Y.F.; Zeng, Z.G. Second-order consensus for multiagent systems via intermittent sampled position data control. IEEE Trans. Cybern. 2020, 50, 2063–2072. [Google Scholar] [CrossRef]
- An, Q.; Chen, X.; Zhang, J.; Shi, R.; Yang, Y.; Huang, W. A Robust Fire Detection Model via Convolution Neural Networks for Intelligent Robot Vision Sensing. Sensors 2022, 22, 2929. [Google Scholar] [CrossRef]
- Liu, H.; Fang, S.; Zhang, Z.; Li, D.; Lin, K.; Wang, J. MFDNet: Collaborative Poses Perception and Matrix Fisher Distribution for Head Pose Estimation. IEEE Trans. Multimed. 2022, 24, 2449–2460. [Google Scholar] [CrossRef]
- Li, Z.; Liu, H.; Zhang, Z.; Liu, T.; Xiong, N. Learning Knowledge Graph Embedding with Heterogeneous Relation Attention Networks. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 3961–3973. [Google Scholar] [CrossRef]
- Liu, H.; Nie, H.; Zhang, Z.; Li, Y.-F. Anisotropic angle distribution learning for head pose estimation and attention understanding in human-computer interaction. Neurocomputing 2021, 433, 310–322. [Google Scholar] [CrossRef]
- Liu, T.; Liu, H.; Chen, Z.; Lesgold, A.M. Fast Blind Instrument Function Estimation Method for Industrial Infrared Spectrometers. IEEE Trans. Ind. Inf. 2018, 14, 5268–5277. [Google Scholar] [CrossRef]
- Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101. Available online: http://arxiv.org/abs/1711.05101 (accessed on 4 January 2019).
Different Recognition Network Models | Speed/ms | COCO mAP [^1] |
---|---|---|
CascadeR-CNN_ResNet-101 | 410 | 42.8 |
CenterNet_DLA-34 | 31 | 41.6 |
RetinaNet_ResNet-101 | 32 | 39.9 |
EfficientDet-D1 | 16 | 40.5 |
EfficientDet-D3 | 37 | 45.6 |
EfficientDet-D7x | 285 | 55.1 |
Positive (Presence of Fire) | Negative (Absence of Fire) |
---|---|
True Positive(TP) | True Negative (TN) |
False Positive(FP) | False Negative(FN) |
EfficientDet-D3 | Improved EfficientDet-D3 | |
---|---|---|
Training time (h) | 6.3 | 4.2 |
Training accuracy | 0.987 | 0.986 |
Different Methods | Precision (%) | Recall (%) | F1-Score (%) |
---|---|---|---|
EfficientDet-D3 | 96.1 | 96.1 | 96.1 |
Improved EfficientDet-D3 | 97 | 97 | 97 |
Cascade R-CNN | CenterNet | EfficientDet-D7x | Proposed Method | |
---|---|---|---|---|
Parameter (MB) | 345 | 185 | 77 | 12 |
Different Methods | TP | TN | FP | FN |
---|---|---|---|---|
Cascade R-CNN | 95 | 38 | 6 | 7 |
CenterNet | 96 | 37 | 7 | 6 |
EfficientDet-D7x | 100 | 39 | 5 | 2 |
Proposed method | 99 | 41 | 3 | 3 |
Different Methods | Precision (%) | Recall (%) | F1-Score (%) |
---|---|---|---|
Cascade R-CNN | 94 | 93.1 | 93.5 |
CenterNet | 93.2 | 94.1 | 93.6 |
EfficientDet-D7x | 95.2 | 98 | 96.6 |
Proposed method | 97 | 97 | 97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, Q.; Wu, S.; Shi, R.; Wang, H.; Yu, J.; Li, Z. Intelligent Detection of Hazardous Goods Vehicles and Determination of Risk Grade Based on Deep Learning. Sensors 2022, 22, 7123. https://doi.org/10.3390/s22197123
An Q, Wu S, Shi R, Wang H, Yu J, Li Z. Intelligent Detection of Hazardous Goods Vehicles and Determination of Risk Grade Based on Deep Learning. Sensors. 2022; 22(19):7123. https://doi.org/10.3390/s22197123
Chicago/Turabian StyleAn, Qing, Shisong Wu, Ruizhe Shi, Haojun Wang, Jun Yu, and Zhifeng Li. 2022. "Intelligent Detection of Hazardous Goods Vehicles and Determination of Risk Grade Based on Deep Learning" Sensors 22, no. 19: 7123. https://doi.org/10.3390/s22197123
APA StyleAn, Q., Wu, S., Shi, R., Wang, H., Yu, J., & Li, Z. (2022). Intelligent Detection of Hazardous Goods Vehicles and Determination of Risk Grade Based on Deep Learning. Sensors, 22(19), 7123. https://doi.org/10.3390/s22197123