Simultaneous Sensor and Actuator Fault Reconstruction by Using a Sliding Mode Observer, Fuzzy Stability Analysis, and a Nonlinear Optimization Tool
<p>Disturbance d(t).</p> "> Figure 2
<p>State estimation error in the presence of faults and disturbance.</p> "> Figure 3
<p>Actuator fault <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (by blue solid line) and its estimation <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <msub> <mi>f</mi> <mi>a</mi> </msub> </mrow> <mo stretchy="true">^</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (by red dashed line).</p> "> Figure 4
<p>Sensor fault <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (by blue solid line) and its estimation <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <msub> <mi>f</mi> <mi>s</mi> </msub> </mrow> <mo stretchy="true">^</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (by red dashed line).</p> "> Figure 5
<p>Fault estimation errors (<b>a</b>). Actuator fault, (<b>b</b>). Sensor fault (the proposed approach by red solid line and ref. [<a href="#B17-sensors-22-06866" class="html-bibr">17</a>] by green dashed line).</p> "> Figure 5 Cont.
<p>Fault estimation errors (<b>a</b>). Actuator fault, (<b>b</b>). Sensor fault (the proposed approach by red solid line and ref. [<a href="#B17-sensors-22-06866" class="html-bibr">17</a>] by green dashed line).</p> ">
Abstract
:1. Introduction
- Using nonlinear optimization tools instead of LMIs, which results in better accuracy.
- Utilizing NQLF, which leads to less conservative optimization conditions than simple quadratic Lyapunov functions.
- Assuming that the premise variables are immeasurable, which makes the proposed method applicable to a broader class of TS fuzzy systems.
2. Preliminaries
- (a)
- If Assumptions 1 and 2 are satisfied, then there exist changes of coordinatessuch thatWith,are nonsingular.
- (b)
- The pairs () are detectable if and only if the invariant zeros of {} lie inand it happens if and only if Assumption 3 is satisfied.
3. TS Fuzzy-Based Sliding Mode Observer Design
4. Simultaneous Fault Reconstruction
- Find theorthogonal transfer matrix by using the QR reduction of matrix and obtain the augmented TS system(4).
- Find the changes of coordinatesand obtain the system matrices in the format(12) and(13).
- Compute the scalars,, andand also the matricesusing the fmincon function in MATLAB software and solving the nonlinear optimization problem(25).
- Compute the maximized admissible Lipschitz constant as.
- Reconstruct the sensor and actuator faults using Equations(43) and(44).
5. Numerical Example
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Hu, Y.; Luo, G.; Gong, C.; Liu, X.; Chen, S. An Embedded Fault-Tolerant Control Method for Single Open-Switch Faults in Standard PMSM Drives. IEEE Trans. Power Electron. 2022, 37, 8476–8487. [Google Scholar] [CrossRef]
- Tawfiq, K.B.; Ibrahim, M.N.; Sergeant, P. An Enhanced Fault-Tolerant Control of a Five-Phase Synchronous Reluctance Motor Fed from a Three-to-Five-Phase Matrix Converter. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 4182–4194. [Google Scholar] [CrossRef]
- Alwi, H.; Edwards, C.; Tan, C.P. Fault Detection and Fault-Tolerant Control Using Sliding Modes; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Falcon, R.; Rios, H.; Dzul, A. A Robust Fault Diagnosis for Quad-Rotors: A Sliding-Mode Observer Approach. IEEE/ASME Trans. Mechatron. 2022, 1–10. [Google Scholar] [CrossRef]
- Zhang, K.; Jiang, B.; Yan, X.-G.; Mao, Z. Incipient Fault Detection for Traction Motors of High-Speed Railways Using an Interval Sliding Mode Observer. IEEE Trans. Intell. Transp. Syst. 2019, 20, 2703–2714. [Google Scholar] [CrossRef]
- Zhang, K.; Jiang, B.; Shi, P.; Cocquempot, V. Observer-Based Fault Estimation Techniques; Springer International Publishing: Cham, Switzerland, 2018; Volume 127. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, F.; Wang, X.; Bu, X. Robust sliding-mode observer-based sensor fault estimation, actuator fault detection and isolation for uncertain nonlinear systems. Int. J. Control Autom. Syst. 2015, 13, 1037–1046. [Google Scholar] [CrossRef]
- Nguyen, V.-C.; Vo, A.-T.; Kang, H.-J. A Non-Singular Fast Terminal Sliding Mode Control Based on Third-Order Sliding Mode Observer for a Class of Second-Order Uncertain Nonlinear Systems and its Application to Robot Manipulators. IEEE Access 2020, 8, 78109–78120. [Google Scholar] [CrossRef]
- Ziyabari, H.S.; Shoorehdeli, M.A. Fuzzy robust fault estimation scheme for a class of nonlinear systems based on an unknown input sliding mode observer. J. Vib. Control 2018, 24, 1861–1873. [Google Scholar] [CrossRef]
- Gu, Z.; Yue, D.; Park, J.H.; Xie, X. Memory-Event-Triggered Fault Detection of Networked IT2 T-S Fuzzy Systems. IEEE Trans. Cybern. 2022, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, H.; Aitouche, A.; Christov, N. Sliding mode observer design for fault and disturbance estimation using Takagi–Sugeno model. Eur. J. Control 2018, 44, 114–122. [Google Scholar] [CrossRef]
- Asadi, S.; Khayatian, A.; Dehghani, M.; Vafamand, N. Simultaneous fault reconstruction of TS fuzzy systems using robust sliding mode observer and non-quadratic stability analysis. In Proceedings of the 2017 Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2–4 May 2017; pp. 823–828. [Google Scholar] [CrossRef]
- Salem, A.; Kardous, Z.; Braiek, N.B.; Ragot, J. On the state observer based stabilization of Takagi-Sugeno systems with immeasurable premise variables. Int. J. Control Autom. Syst. 2012, 10, 1153–1163. [Google Scholar] [CrossRef]
- Gómez-Peñate, S.; Valencia-Palomo, G.; López-Estrada, F.; Astorga-Zaragoza, C.; Osornio-Rios, A.R.; Ruiz, I.D.L.S. Sensor Fault Diagnosis Based on a Sliding Mode and Unknown Input Observer for Takagi-Sugeno Systems with Uncertain Premise Variables. Asian J. Control 2019, 21, 339–353. [Google Scholar] [CrossRef]
- Ben Brahim, A.; Dhahri, S.; Ben Hmida, F.; Sellami, A. An H∞ sliding mode observer for Takagi–Sugeno nonlinear systems with simultaneous actuator and sensor faults. Int. J. Appl. Math. Comput. Sci. 2015, 25, 547–559. [Google Scholar] [CrossRef]
- Ben Brahim, A.; Dhahri, S.; BEN Hmida, F.; Sellami, A. Simultaneous Actuator and Sensor Faults Reconstruction Based on Robust Sliding Mode Observer for a Class of Nonlinear Systems. Asian J. Control 2017, 19, 362–371. [Google Scholar] [CrossRef]
- Asadi, S.; Khayatian, A.; Dehghani, M.; Vafamand, N.; Khooban, M.H. Robust sliding mode observer design for simultaneous fault reconstruction in perturbed Takagi-Sugeno fuzzy systems using non-quadratic stability analysis. J. Vib. Control 2020, 26, 1092–1105. [Google Scholar] [CrossRef]
- Asadi, S.; Vafamand, N.; Moallem, M.; Dragicevic, T. Fault Reconstruction of Islanded Nonlinear DC Microgrids: An LPV-Based Sliding Mode Observer Approach. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 4606–4614. [Google Scholar] [CrossRef]
- Vafamand, N.; Asemani, M.H.; Khayatiyan, A. A robust L1 controller design for continuous-time TS systems with persistent bounded disturbance and actuator saturation. Eng. Appl. Artif. Intell. 2016, 56, 212–221. [Google Scholar] [CrossRef]
- Scherer, C.; Weiland, S. Linear matrix inequalities in control. In Lecture Notes; Dutch Institute for Systems and Control: Delft, The Netherlands, 2000; Volume 3. [Google Scholar]
- Vafamand, N.; Khayatian, A. Model predictive-based reset gain-scheduling dynamic control law for polytopic LPV systems. ISA Trans. 2018, 81, 132–140. [Google Scholar] [CrossRef] [PubMed]
Proposed Approach | 23.9858 | 0.3820 | 15.3073 | 0.4376 |
[17] | 53.3519 | 0.5704 | 33.6076 | 0.7679 |
Improvement (%) | +55.04 | +33.03 | +54.45 | +43.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asadi, S.; Moallem, M.; Wang, G.G. Simultaneous Sensor and Actuator Fault Reconstruction by Using a Sliding Mode Observer, Fuzzy Stability Analysis, and a Nonlinear Optimization Tool. Sensors 2022, 22, 6866. https://doi.org/10.3390/s22186866
Asadi S, Moallem M, Wang GG. Simultaneous Sensor and Actuator Fault Reconstruction by Using a Sliding Mode Observer, Fuzzy Stability Analysis, and a Nonlinear Optimization Tool. Sensors. 2022; 22(18):6866. https://doi.org/10.3390/s22186866
Chicago/Turabian StyleAsadi, Samira, Mehrdad Moallem, and G. Gary Wang. 2022. "Simultaneous Sensor and Actuator Fault Reconstruction by Using a Sliding Mode Observer, Fuzzy Stability Analysis, and a Nonlinear Optimization Tool" Sensors 22, no. 18: 6866. https://doi.org/10.3390/s22186866