Localization of Cracks in Concrete Structures Using an Unmanned Aerial Vehicle
<p>Overview of the UAV-based concrete crack localization: (<b>a</b>) Drone-based aerial photography; (<b>b</b>) Point cloud-based orthoimage generation for estimating sizes of reference objects; (<b>c</b>) Construction of image stitching-based reference object and crack visualization image data; (<b>d</b>) Image rectification using reference object size-based homography matrix; (<b>e</b>) Estimation of unit pixel size by defining the relationship of reference objects in orthoimage and crack images; (<b>f</b>) Estimating the relative position of cracks with respect to the reference object using the unit pixel size.</p> "> Figure 2
<p>Image rectification using a homography matrix based on the size of the reference object.</p> "> Figure 3
<p>Unit pixel size for the analysis data image.</p> "> Figure 4
<p>Overview of target site.</p> "> Figure 5
<p>Process of orthoimage generation. (<b>a</b>) Initial processing; (<b>b</b>) Tie point matching and point clouding; (<b>c</b>) Orthoimage.</p> "> Figure 6
<p>Analysis data including both reference object and cracks based on image stitching.</p> "> Figure 7
<p>Analysis data after image rectification.</p> "> Figure 8
<p>Visualization measured ground truth distance to cracks and reference object. (Location from reference point to remote points of cracks).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Drone-Based Data Acquisition
2.3. Construction of Analysis Data
2.4. Crack Localization
3. Experimental Results
3.1. Data Acquisition
3.2. Construction of Analysis Data
3.3. Localization of Cracks in the Analysis Data
3.4. Data Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, L.; Zhang, Z. Automatic Detection of Wind Turbine Blade Surface Cracks Based on UAV-Taken Images. IEEE Trans. Ind. Electron. 2017, 64, 7293–7303. [Google Scholar] [CrossRef]
- Kang, D.; Cha, Y. Damage Detection with an Autonomous UAV using Deep Learning. In Proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, Denver, CO, USA, 27 March 2018. [Google Scholar]
- Jiang, S.; Zhang, J. Real-time Crack Assessment using Deep Neural Networks with Wall-climbing Unmanned Aerial System. Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 549–564. [Google Scholar] [CrossRef]
- Salaan, C.J.O.; Okada, Y.; Mizutani, S.; Ishii, T.; Koura, K.; Ohno, K.; Tadokoro, S. Close Visual Bridge Inspection using a UAV with a Passive Rotating Spherical Shell. J. Field Robot. 2018, 35, 850–867. [Google Scholar] [CrossRef]
- Akbar, M.A.; Qidwai, U.; Jahanshahi, M.R. An Evaluation of Image-based Structural Health Monitoring using Integrated Unmanned Aerial Vehicle Platform. Struct. Control Health Monit. 2019, 26, e2276. [Google Scholar] [CrossRef]
- Ellenberg, A.; Branco, L.; Krick, A.; Bartoli, I.; Kontsos, A. Use of Unmanned Aerial Vehicle for Quantitative Infrastructure Evaluation. J. Infrastruct. Syst. 2015, 21, 04014054. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, H.; Wang, H.; Wang, S.; Li, Y. Automatic Pixel-Level Crack Detection on Dam Surface using Deep Convolutional Network. Sensors 2020, 20, 2069. [Google Scholar] [CrossRef]
- Li, Y.; Ma, J.; Zhao, Z.; Shi, G. A Novel Approach for UAV Image Crack Detection. Sensors 2022, 22, 3305. [Google Scholar] [CrossRef]
- Bhowmick, S.; Nagarajaiah, S.; Veeraraghavan, A. Vision and Deep Learning-Based Algorithms to Detect and Quantify Cracks on Concrete Surfaces from UAV Videos. Sensors 2020, 20, 6299. [Google Scholar] [CrossRef]
- Barber, D.B.; Redding, J.D.; McLain, T.W.; Beard, R.W.; Taylor, C.N. Vision-Based Target Geo-Location using a Fixed-Wing Miniature Air Vehicle. J. Intell. Robot. Syst. 2006, 47, 361–382. [Google Scholar] [CrossRef]
- Minaeian, S.; Liu, J.; Son, Y. Vision-Based Target Detection and Localization Via a Team of Cooperative UAV and UGVs. IEEE Trans. Syst. Man Cybern. Syst. 2015, 46, 1005–1016. [Google Scholar] [CrossRef]
- Trujillo, J.; Munguia, R.; Guerra, E.; Grau, A. Cooperative Monocular-Based SLAM for Multi-UAV Systems in GPS-Denied Environments. Sensors 2018, 18, 1351. [Google Scholar] [CrossRef] [PubMed]
- Hinas, A.; Roberts, J.M.; Gonzalez, F. Vision-Based Target Finding and Inspection of a Ground Target using a Multirotor UAV System. Sensors 2017, 17, 2929. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Li, B.; Jiang, Y.; Wen, C. A Camera-Based Target Detection and Positioning UAV System for Search and Rescue (SAR) Purposes. Sensors 2016, 16, 1778. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhu, H.; Zhang, D.; Zhou, D.; Wang, X. Vision-Based Detection and Tracking of a Mobile Ground Target using a Fixed-Wing UAV. Int. J. Adv. Robot. Syst. 2014, 11, 156. [Google Scholar] [CrossRef]
- Wang, D.; Xu, C.; Yuan, P.; Huang, D. A Revised Monte Carlo Method for Target Location with UAV. J. Intell. Robot. Syst. 2020, 97, 373–386. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Q.; Chu, L.; Zhou, Y.; Xu, C. Real-Time Detection and Spatial Localization of Insulators for UAV Inspection Based on Binocular Stereo Vision. Remote Sens. 2021, 13, 230. [Google Scholar] [CrossRef]
- Chen, M.; Tang, Y.; Zou, X.; Huang, K.; Li, L.; He, Y. High-Accuracy Multi-Camera Reconstruction Enhanced by Adaptive Point Cloud Correction Algorithm. Opt. Lasers Eng. 2019, 122, 170–183. [Google Scholar] [CrossRef]
- Tang, Y.; Zhu, M.; Chen, Z.; Wu, C.; Chen, B.; Li, C.; Li, L. Seismic Performance Evaluation of Recycled Aggregate Concrete-Filled Steel Tubular Columns with Field Strain Detected Via a Novel Mark-Free Vision Method. Structures 2022, 37, 426–441. [Google Scholar] [CrossRef]
- Micheal, A.A.; Vani, K.; Sanjeevi, S.; Lin, C. Object Detection and Tracking with UAV Data using Deep Learning. J. Indian Soc. Remote Sens. 2021, 49, 463–469. [Google Scholar] [CrossRef]
- Kim, I.; Jeon, H.; Baek, S.; Hong, W.; Jung, H. Application of Crack Identification Techniques for an Aging Concrete Bridge Inspection using an Unmanned Aerial Vehicle. Sensors 2018, 18, 1881. [Google Scholar] [CrossRef] [Green Version]
- Phung, M.D.; Hoang, V.T.; Dinh, T.H.; Ha, Q. Automatic Crack Detection in Built Infrastructure using Unmanned Aerial Vehicles. In Proceedings of the 34th International Symposium on Automation and Robotics in Construction (ISARC), Taipei, Taiwan, 30 June 2017. [Google Scholar]
- Liu, Y.; Nie, X.; Fan, J.; Liu, X. Image-based Crack Assessment of Bridge Piers using Unmanned Aerial Vehicles and Three-dimensional Scene Reconstruction. Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 511–529. [Google Scholar] [CrossRef]
- Bang, S.; Kim, H.; Kim, H. UAV-Based Automatic Generation of High-Resolution Panorama at a Construction Site with a Focus on Preprocessing for Image Stitching. Autom. Constr. 2017, 84, 70–80. [Google Scholar] [CrossRef]
- Dandois, J.P.; Olano, M.; Ellis, E.C. Optimal Altitude, Overlap, and Weather Conditions for Computer Vision UAV Estimates of Forest Structure. Remote Sens. 2015, 7, 13895–13920. [Google Scholar] [CrossRef]
- Goodbody, T.R.; White, J.C.; Coops, N.C.; LeBoeuf, A. Benchmarking Acquisition Parameters for Digital Aerial Photogrammetric Data for Forest Inventory Applications: Impacts of Image Overlap and Resolution. Remote Sens. Environ. 2021, 265, 112677. [Google Scholar] [CrossRef]
- Zhu, Z.; Fu, J.; Yang, J.; Zhang, X. Panoramic Image Stitching for Arbitrarily Shaped Tunnel Lining Inspection. Comput.-Aided Civ. Infrastruct. Eng. 2016, 31, 936–953. [Google Scholar] [CrossRef]
- La, H.M.; Gucunski, N.; Dana, K.; Kee, S. Development of an Autonomous Bridge Deck Inspection Robotic System. J. Field Robot. 2017, 34, 1489–1504. [Google Scholar] [CrossRef]
- Jahanshahi, M.R.; Masri, S.F.; Sukhatme, G.S. Multi-Image Stitching and Scene Reconstruction for Evaluating Defect Evolution in Structures. Struct. Health Monit. 2011, 10, 643–657. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; Watson, C. An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds. Remote Sens. 2012, 4, 1392–1410. [Google Scholar] [CrossRef]
- Zeybek, M.; Şanlıoğlu, İ. Point Cloud Filtering on UAV Based Point Cloud. Measurement 2019, 133, 99–111. [Google Scholar] [CrossRef]
- Lee, H.; Kim, K. An Improved RANSAC Algorithm Based on Correspondence Point Information for Calculating Correct Conversion of Image Stitching. KIPS Trans. Softw. Data Eng. 2018, 7, 9–18. [Google Scholar]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Shi, H.; Guo, L.; Tan, S.; Li, G.; Sun, J. Improved Parallax Image Stitching Algorithm Based on Feature Block. Symmetry 2019, 11, 348. [Google Scholar] [CrossRef]
- Tian, J.; Wu, Y.; Cai, Y.; Fan, H.; Yu, W. A Novel Mosaic Method for Spaceborne ScanSAR Images Based on Homography Matrix Compensation. Remote Sens. 2021, 13, 2866. [Google Scholar] [CrossRef]
Reference Objects | Dimension (Width × Length, Unit: mm) |
---|---|
Reference 1 | 792 × 1823 |
Reference 2 | 881 × 622 |
Reference 3 | 240 × 215 |
Classification | Unit Pixel Size (Unit: mm) |
---|---|
Crack 1 | 0.58 |
Crack 2 | 0.62 |
Crack 3 | 0.61 |
Crack 4 | 0.61 |
Crack 5 | 0.57 |
Classification | Relative Position (∆x, ∆y), (Unit: mm) |
---|---|
Crack 1-Reference 1 (Point 1) | (−145, 553) |
Crack 2-Reference 1 (Point 2) | (−168, 202) |
Crack 3-Reference 2 (Point 3) | (−1762, −84) |
Crack 4-Reference 2 (Point 4) | (1796, −8) |
Crack 5-Reference 3 (Point 5) | (1151, 1661) |
Classification | Ground Truth Values (∆x, ∆y), (Unit: mm) |
---|---|
Crack 1-Reference 1 (Point 1) | (−177, 600) |
Crack 2-Reference 1 (Point 2) | (−106, 184) |
Crack 3-Reference 2 (Point 3) | (−1678, −76) |
Crack 4-Reference 2 (Point 4) | (1715, −50) |
Crack 5-Reference 3 (Point 5) | (−127, 1613) |
Classification | Relative Position (∆x, ∆y), (Unit: mm) | ||||
---|---|---|---|---|---|
Coordinate | Ground Truth | Estimate | Error | RMSE | |
Crack 1-Reference 1 (Point 1) | x | −177 | −145 | −32 | 56.86 |
y | 600 | 553 | 47 | ||
Crack 2-Reference 1 (Point 2) | x | −106 | −168 | 62 | 64.56 |
y | 184 | 202 | −18 | ||
Crack 3-Reference 2 (Point 3) | x | −1678 | −1762 | 84 | 84.38 |
y | −76 | −84 | 8 | ||
Crack 4-Reference 2 (Point 4) | x | 1715 | 1796 | −81 | 91.24 |
y | −50 | −8 | −42 | ||
Crack 5-Reference 3 (Point 5) | x | −127 | −151 | 24 | 37.95 |
y | 1613 | 1661 | 48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, H.-J.; Seo, D.-M.; Kim, M.-S.; Park, M.-S.; Hong, W.-H.; Baek, S.-C. Localization of Cracks in Concrete Structures Using an Unmanned Aerial Vehicle. Sensors 2022, 22, 6711. https://doi.org/10.3390/s22176711
Woo H-J, Seo D-M, Kim M-S, Park M-S, Hong W-H, Baek S-C. Localization of Cracks in Concrete Structures Using an Unmanned Aerial Vehicle. Sensors. 2022; 22(17):6711. https://doi.org/10.3390/s22176711
Chicago/Turabian StyleWoo, Hyun-Jung, Dong-Min Seo, Min-Seok Kim, Min-San Park, Won-Hwa Hong, and Seung-Chan Baek. 2022. "Localization of Cracks in Concrete Structures Using an Unmanned Aerial Vehicle" Sensors 22, no. 17: 6711. https://doi.org/10.3390/s22176711
APA StyleWoo, H. -J., Seo, D. -M., Kim, M. -S., Park, M. -S., Hong, W. -H., & Baek, S. -C. (2022). Localization of Cracks in Concrete Structures Using an Unmanned Aerial Vehicle. Sensors, 22(17), 6711. https://doi.org/10.3390/s22176711