High-Temperature-Resistant Fiber Laser Vector Accelerometer Based on a Self-Compensated Multicore Fiber Bragg Grating
<p>(<b>a</b>) Scanning electron microscopy image of the homogeneous SCF with the defined geometrical parameters and (<b>b</b>) schematic diagram of interrogation.</p> "> Figure 2
<p>(<b>a</b>) Experimental setup for the ring cavity laser used for the interrogation of the two-dimensional accelerometer, (<b>b</b>) distribution of FBGs in SCF (i.e., sensing probe), (<b>c</b>) reflection spectra of the FBGs inscribed in the fiber cores and the output spectra of the laser.</p> "> Figure 3
<p>Schematic diagram of the experimental setup for the vector vibration detection system.</p> "> Figure 4
<p>(<b>a</b>) Real-time reflected power and (<b>b</b>) the corresponding FFT spectrum in cores 2, 4, and 6 with an exciting frequency of 40 Hz and an acceleration of 1.0 g. (<b>c</b>) Reflected power versus applied acceleration ranging from 0.03 to 1.0 g; (<b>d</b>) sensitivity-frequency responses of the FBGs in cores 2, 4, and 6 with an acceleration of 1.0 g under an orientation angle of 350°.</p> "> Figure 5
<p>(<b>a</b>) Orientation response of core 2 at different accelerations ranging from 0.5 to 5.0 g; (<b>b</b>) acceleration sensitivities of the FBGs in the three outer cores 2, 4, and 6, plotted for various orientation angles in polar coordinate.</p> "> Figure 6
<p>(<b>a</b>) Actual and measured orientation angle at various accelerations ranging from 0.5 to 5.0 g and (<b>b</b>) corresponding accuracy ranges.</p> "> Figure 7
<p>Evolution of reflection spectra of the accelerometer at (<b>a</b>) various strains ranging from 0 to 2289 με and (<b>b</b>) various temperatures ranging from 50 to 1050 °C. (<b>c</b>) Sensitivity-temperature responses of the accelerometer in the range of 27 to 550 °C with an exciting frequency of 40 Hz and an acceleration of 5.0 g.</p> ">
Abstract
:1. Introduction
2. Principle of Acceleration and Orientation Measurement
3. Experimental Setup and Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fienga, F.; Marrazzo, V.R.; Spedding, S.B.; Szillasi, Z.; Beni, N.; Irace, A.; Zeuner, W.; Ball, A.; Vaccaro, V.G.; Salvant, B.; et al. Fiber Bragg Grating Sensors as Innovative Monitoring Tool for Beam Induced RF Heating on LHC Beam Pipe. J. Lightwave Technol. 2021, 39, 4145–4150. [Google Scholar] [CrossRef]
- Kim, H.; Kerrigan, S.; Bourham, M.; Jiang, X. AlN Single Crystal Accelerometer for Nuclear Power Plants. IEEE Trans. Ind. Electron. 2021, 68, 5346–5354. [Google Scholar] [CrossRef]
- Poletto, F.; Farina, B.; Carcione, J.M. Sensitivity of seismic properties to temperature variations in a geothermal reservoir. Geothermics 2018, 76, 149–163. [Google Scholar] [CrossRef]
- Reiser, F.; Schmelzbach, C.; Sollberger, D.; Maurer, H.; Greenhalgh, S.; Planke, S.; Kästner, F.; Flóvenz, Ó.; Giese, R.; Halldórsdóttir, S.; et al. Imaging the high-temperature geothermal field at Krafla using vertical seismic profiling. J. Volcanol. Geotherm. Res. 2020, 391, 106474. [Google Scholar] [CrossRef]
- Rong, Q.; Qiao, X. FBG for Oil and Gas Exploration. J. Lightwave Technol. 2019, 37, 2502–2515. [Google Scholar] [CrossRef]
- Paulsson, B.N.P.; Toko, J.L.; Thornburg, J.A.; Slopko, F.; He, R.; Zhang, C.H. Development of 300 °C fiber optic seismic sensors for geothermal reservoir imaging and monitoring. Trans.-Geotherm. Resour. Counc. 2013, 37, 1043–1049. [Google Scholar]
- Kumar, S.; Roy, N.; Ganguli, R. Monitoring low cycle fatigue damage in turbine blade using vibration characteristics. Mech. Syst. Signal Process. 2007, 21, 480–501. [Google Scholar] [CrossRef]
- Liao, C.; Xiong, C.; Zhao, J.; Zou, M.; Zhao, Y.; Li, B.; Ji, P.; Cai, Z.; Gan, Z.; Wang, Y.; et al. Design and realization of 3D printed fiber-tip microcantilever probes applied to hydrogen sensing. Light Adv. Manuf. 2022, 3, 5. [Google Scholar]
- Lu, Q.; Wang, Y.; Wang, X.; Yao, Y.; Wang, X.; Huang, W. Review of micromachined optical accelerometers: From mg to sub-μg. Opto-Electron. Adv. 2021, 4, 200045. [Google Scholar] [CrossRef]
- Linessio, R.P.; de Sousa, K.M.; da Silva, T.; Bavastri, C.A.; da Costa Antunes, P.F.; da Silva, J.C.C. Induction Motors Vibration Monitoring Using a Biaxial Optical Fiber Accelerometer. IEEE Sens. J. 2016, 16, 8075–8082. [Google Scholar] [CrossRef]
- Mahissi, M.; Tong, X.; Zhang, C.; Deng, C.; Wei, J.; Chen, S. Study on the vibration performances for a high temperature fiber F-P accelerometer. Opt. Fiber Technol. 2021, 62, 102471. [Google Scholar]
- Huang, Y.; Tang, F.; Ma, D.; Liu, Z.; Wang, X. Design, Fabrication, Characterization, and Application of an Ultra-High Temperature 6H-SiC Sapphire Fiber Optic Vibration Sensor. IEEE Photon. J. 2019, 11, 6802512. [Google Scholar]
- Zhao, Z.; Yu, Z.; Chen, K.; Yu, Q. A Fiber-Optic Fabry-Perot Accelerometer Based on High-Speed White Light Interferometry Demodulation. J. Lightwave Technol. 2018, 36, 1562–1567. [Google Scholar] [CrossRef]
- Du, B.; Xu, X.; He, J.; Guo, K.; Huang, W.; Zhang, F.; Zhang, M.; Wang, Y. In-Fiber Collimator-Based Fabry-Perot Interferometer with Enhanced Vibration Sensitivity. Sensors 2019, 19, 12. [Google Scholar]
- Parida, O.P.; Nayak, J.; Asokan, S. Design and Validation of a Novel High Sensitivity Self-Temperature Compensated Fiber Bragg Grating Accelerometer. IEEE Sens. J. 2019, 19, 6197–6204. [Google Scholar] [CrossRef]
- Gagliardi, G.; Salza, M.; Ferraro, P.; de Natale, P.; di Maio, A.; Carlino, S.; de Natale, G.; Boschi, E. Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications. Meas. Sci. Technol. 2008, 19, 085306. [Google Scholar]
- Guo, T.; Zhang, T.; Li, Y.; Qiao, X. Highly Sensitive FBG Seismometer With a 3D-Printed Hexagonal Configuration. J. Lightwave Technol. 2020, 38, 4588–4595. [Google Scholar]
- Lin, Q.; Chen, L.; Li, S.; Wu, X. A high-resolution fiber optic accelerometer based on intracavity phase-generated carrier (PGC) modulation. Meas. Sci. Technol. 2010, 22, 015303. [Google Scholar] [CrossRef]
- Wei, L.; Yu, L.; Wang, J.; Jiang, D.; Liu, Q.; Liu, Z. An FBG-Sensing Two-Dimensional Vibration Sensor Based on Multi-Axis Flexure Hinge. IEEE Sens. J. 2019, 19, 3698–3710. [Google Scholar]
- Guo, T.; Shang, L.; Ran, Y.; Guan, B.-O.; Albert, J. Fiber-optic vector vibroscope. Opt. Lett. 2012, 37, 2703–2705. [Google Scholar]
- Feng, D.; Zhou, W.; Qiao, X.; Albert, J. Compact Optical Fiber 3D Shape Sensor Based on a Pair of Orthogonal Tilted Fiber Bragg Gratings. Sci. Rep. 2015, 5, 17415. [Google Scholar] [PubMed]
- Guo, T.; Shang, L.; Liu, F.; Wu, C.; Guan, B.-O.; Tam, H.-Y.; Albert, J. Polarization-maintaining fiber-optic-grating vector vibroscope. Opt. Lett. 2013, 38, 531–533. [Google Scholar] [PubMed]
- Zhao, Z.; Dang, Y.; Tang, M. Advances in Multicore Fiber Grating Sensors. Photonics 2022, 9, 381–405. [Google Scholar]
- Fender, A.; MacPherson, W.N.; Maier, R.R.J.; Barton, J.S.; George, D.S.; Howden, R.I.; Smith, G.W.; Jones, B.J.S.; McCulloch, S.; Chen, X.; et al. Two-Axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings. IEEE Sens. J. 2008, 8, 1292–1298. [Google Scholar]
- Cui, J.; Liu, Z.; Gunawardena, D.S.; Zhao, Z.; Tam, H.-Y. Two-dimensional vector accelerometer based on Bragg gratings inscribed in a multi-core fiber. Opt. Express 2019, 27, 20848–20856. [Google Scholar] [PubMed]
- Zhou, R.; Chen, F.; Li, S.; Wang, R.; Qiao, X. Three-Dimensional Vector Accelerometer Using a Multicore Fiber Inscribed with Three FBGs. J. Lightwave Technol. 2021, 39, 3244–3250. [Google Scholar]
- Ran, Y.; Feng, F.; Liang, Y.; Jin, L.; Guan, B. Type IIa Bragg grating based ultra-short DBR fiber laser with high temperature resistance. Opt. Lett. 2015, 40, 5706–5709. [Google Scholar]
- Pham, X.; Si, J.; Chen, T.; Niu, Z.; Huang, F.; Hou, X. Ultra-short DBR fiber laser with high-temperature resistance using tilted fiber Bragg grating output coupler. Opt. Express 2019, 27, 38532–38540. [Google Scholar]
- Meng, Z.; Stewart, G.; Whitenett, G. Stable Single-Mode Operation of a Narrow-Linewidth, Linearly Polarized, Erbium-Fiber Ring Laser Using a Saturable Absorber. J. Lightwave Technol. 2006, 24, 2179–2183. [Google Scholar]
- Yeh, C.; Huang, T.; Chien, H.; Ko, C.; Chi, S. Tunable S-band erbium-doped triple-ring laser with single-longitudinal-mode operation. Opt. Express 2007, 15, 382–386. [Google Scholar]
- Xiao, X.; Xu, B.; Xu, X.; Du, B.; Chen, Z.; Fu, C.; Liao, C.; He, J.; Wang, Y. Femtosecond laser auto-positioning direct writing of a multicore fiber Bragg grating array for shape sensing. Opt. Lett. 2022, 47, 758–761. [Google Scholar] [PubMed]
- Xu, B.; He, J.; Du, B.; Xiao, X.; Xu, X.; Fu, C.; He, J.; Liao, C.; Wang, Y. Femtosecond laser point-by-point inscription of an ultra-weak fiber Bragg grating array for distributed high-temperature sensing. Opt. Express 2021, 29, 32615–32626. [Google Scholar] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, X.; He, J.; Xu, X.; Chen, R.; Du, B.; Chen, Y.; Liu, S.; Fu, C.; Wang, Y. High-Temperature-Resistant Fiber Laser Vector Accelerometer Based on a Self-Compensated Multicore Fiber Bragg Grating. Sensors 2022, 22, 6459. https://doi.org/10.3390/s22176459
Xiao X, He J, Xu X, Chen R, Du B, Chen Y, Liu S, Fu C, Wang Y. High-Temperature-Resistant Fiber Laser Vector Accelerometer Based on a Self-Compensated Multicore Fiber Bragg Grating. Sensors. 2022; 22(17):6459. https://doi.org/10.3390/s22176459
Chicago/Turabian StyleXiao, Xunzhou, Jun He, Xizhen Xu, Runxiao Chen, Bin Du, Yanping Chen, Shen Liu, Cailing Fu, and Yiping Wang. 2022. "High-Temperature-Resistant Fiber Laser Vector Accelerometer Based on a Self-Compensated Multicore Fiber Bragg Grating" Sensors 22, no. 17: 6459. https://doi.org/10.3390/s22176459
APA StyleXiao, X., He, J., Xu, X., Chen, R., Du, B., Chen, Y., Liu, S., Fu, C., & Wang, Y. (2022). High-Temperature-Resistant Fiber Laser Vector Accelerometer Based on a Self-Compensated Multicore Fiber Bragg Grating. Sensors, 22(17), 6459. https://doi.org/10.3390/s22176459