Compressed Sensing Technique for the Localization of Harmonic Distortions in Electrical Power Systems
<p>Process diagram of harmonic distortion detection by compressed sensing.</p> "> Figure 2
<p>Methodology used for the problem formulation.</p> "> Figure 3
<p>(<b>a</b>) General block diagram and (<b>b</b>) flow diagram of the proposed model.</p> "> Figure 4
<p>Obtaining the measurement vector of the discrete signal (x) in the time domain (t).</p> "> Figure 5
<p>(<b>a</b>) Measurement matrix (C). (<b>b</b>) Dictionary matrix (<math display="inline"><semantics> <mo>Θ</mo> </semantics></math>).</p> "> Figure 6
<p>Formation of the dictionary matrix (<math display="inline"><semantics> <mo>Θ</mo> </semantics></math>).</p> "> Figure 7
<p>Indeterminate system of equations and its solution with the L1-norm.</p> "> Figure 8
<p>L1 and L2 minimum standard solutions to the compressed sensing problem.</p> "> Figure 9
<p>Signal reconstruction parameters and variables.</p> "> Figure 10
<p>THD error vs. several cycles and harmonic error vs. several cycles.</p> "> Figure 11
<p>Harmonic error rate of periods 14, 17, and 19.</p> "> Figure 12
<p>Machine time for a constant number of samples at 32 and varying the number of periods from 1 to 20.</p> "> Figure 13
<p>Error vs. harmonics, keeping the number of periods constant at 20 and varying the number of samples per cycle from 20 to 32.</p> "> Figure 14
<p>Machine time, number of periods constant at 20, varying the number of samples per cycle from 20 to 32 samples.</p> "> Figure 15
<p>Real signal and its harmonics vs. CS-reconstructed signal and its harmonics.</p> "> Figure 16
<p>Hardware implemented in the experimental process.</p> ">
Abstract
:1. Introduction
2. Related Works
3. Problem Formulation
3.1. Proposed Strategy and Methodology
3.1.1. Data Acquisition
3.1.2. Measurement Vector
3.1.3. Matrix Dictionary
3.1.4. Solution to the Indeterminate System of Equations
3.1.5. Signal Reconstruction
3.1.6. THD Harmonic Distortion Location
Algorithm 1 Harmonic detection with the CS algorithm. |
|
4. Analysis of Results
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Puneeth, D.; Kulkarni, M. Data Aggregation using Compressive Sensing for Energy Efficient Routing Strategy. Procedia Comput. Sci. 2020, 171, 2242–2251. [Google Scholar] [CrossRef]
- Gonzalez-Abreu, A.D.; Martínez, V.; Delgado-Prieto, M.; Saucedo-Dorantes, J.J.; Osornio-Rios, R.A. Power quality monitoring and disturbances classification based on autoencoder and neural network for electrical power supply. Renew. Energy Power Qual. J. 2020, 18, 261–265. [Google Scholar] [CrossRef]
- Joshi, P.; Jain, S.K. An improved active power direction method for harmonic source identification. Trans. Inst. Meas. Control. 2020, 42, 2569–2577. [Google Scholar] [CrossRef]
- Shao, C.; Li, H. Identifying Single-Event Transient Location Based on Compressed Sensing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 768–777. [Google Scholar] [CrossRef]
- Baraniuk, R.G. Compressive sensing. Handb. Math. Methods Imaging 2015, 24, 118–121. [Google Scholar] [CrossRef]
- Baraniuk, R.G.; Cevher, V.; Duarte, M.F.; Hegde, C. Model-based compressive sensing. IEEE Trans. Inf. Theory 2010, 56, 1982–2001. [Google Scholar] [CrossRef]
- Candes, E.; Wakin, M. An Introduction To Compressive Sampling. IEEE Signal Process. Mag. 2008, 25, 21–30. [Google Scholar] [CrossRef]
- Granados-Lieberman, D.; Romero-Troncoso, R.J.; Osornio-Rios, R.A.; Garcia-Perez, A.; Cabal-Yepez, E. Techniques and methodologies for power quality analysis and disturbances classification in power systems: A review. IET Gener. Transm. Distrib. 2011, 5, 519–529. [Google Scholar] [CrossRef]
- Grasel, B. Supraharmonic and Harmonic Emissions of a Bi-Directional V2G Electric Vehicle Charging Station and Their Impact to the Grid Impedance. Energies 2022, 15, 2920. [Google Scholar] [CrossRef]
- Corti, F.; Shehata, A.H.; Laudani, A.; Cardelli, E. Design and comparison of the performance of 12-pulse rectifiers for aerospace applications. Energies 2021, 14, 6312. [Google Scholar] [CrossRef]
- Terriche, Y.; Mutarraf, M.U.; Laib, A.; Su, C.L.; Guerrero, J.M.; Vasquez, J.C.; Golestan, S. A Resolution-Enhanced Sliding Matrix Pencil Method for Evaluation of Harmonics Distortion in Shipboard Microgrids. IEEE Trans. Transp. Electrif. 2020, 6, 1290–1300. [Google Scholar] [CrossRef]
- Morales-Velazquez, L.; Romero-Troncoso, R.d.J.; Herrera-Ruiz, G.; Morinigo-Sotelo, D.; Osornio-Rios, R.A. Smart sensor network for power quality monitoring in electrical installations. Meas. J. Int. Meas. Confed. 2017, 103, 133–142. [Google Scholar] [CrossRef]
- Karafotis, P.A.; Evangelopoulos, V.A.; Georgilakis, P.S. Evaluation of harmonic contribution to unbalance in power systems under non-stationary conditions using wavelet packet transform. Electr. Power Syst. Res. 2020, 178, 106026. [Google Scholar] [CrossRef]
- Aharon, M.; Elad, M.; Bruckstein, A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 2006, 54, 4311–4322. [Google Scholar] [CrossRef]
- Carta, D.; Muscas, C.; Pegoraro, P.A.; Sulis, S. Identification and Estimation of Harmonic Sources Based on Compressive Sensing. IEEE Trans. Instrum. Meas. 2019, 68, 95–104. [Google Scholar] [CrossRef]
- Campaña, M.; Masache, P.; Inga, E.; Carrión, D. Estabilidad de tensión y compensación electrónica en sistemas eléctricos de potencia usando herramientas de simulación. Ingenius 2022, 2. [Google Scholar] [CrossRef]
- Palczynska, B.; Masnicki, R.; Mindykowski, J. Compressive sensing approach to harmonics detection in the ship electrical network. Sensors 2020, 20, 2744. [Google Scholar] [CrossRef]
- Correa, E.; Inga, E.; Inga, J.; Hincapie, R. Electrical consumption pattern base on meter data management system using big data techniques. In Proceedings of the 2017 International Conference on Information Systems and Computer Science, INCISCOS 2017, Quito, Ecuador, 23–25 November 2018; pp. 334–339. [Google Scholar] [CrossRef]
- Majidi, M.; Etezadi-Amoli, M.; Livani, H. Distribution system state estimation using compressive sensing. Int. J. Electr. Power Energy Syst. 2017, 88, 175–186. [Google Scholar] [CrossRef]
- Kahane, J.P. Compressed sensing from a harmonic analysis point of view. Anal. Math. 2016, 42, 19–29. [Google Scholar] [CrossRef]
- Yang, T.; Pen, H.; Wang, D.; Wang, Z. Harmonic analysis in integrated energy system based on compressed sensing. Appl. Energy 2016, 165, 583–591. [Google Scholar] [CrossRef]
- Daponte, P.; De Vito, L.; Iadarola, G.; Rapuano, S. A reduced-code method for integral nonlinearity testing in DACs. Meas. J. Int. Meas. Confed. 2021, 182, 109764. [Google Scholar] [CrossRef]
- Daponte, P.; de Vito, L.; Iadarola, G.; Rapuano, S. A CS method for DAC nonlinearity testing. In Proceedings of the 24th IMEKO TC4 International Symposium and 22nd International Workshop on ADC and DAC Modelling and Testing, Palermo, Italy, 14–16 September 2020; Volume 24, pp. 146–150. [Google Scholar]
- Andráš, I.; Michaeli, L.; Šaliga, J. Compressed sensing with continuous parametric reconstruction. Int. J. Electr. Comput. Eng. 2021, 11, 851–862. [Google Scholar] [CrossRef]
- Andráš, I.; Šaliga, J.; Michaeli, L. Compressed sensing with model based reconstruction. In Proceedings of the 23rd IMEKO TC4 International Symposium Electrical and Electronic Measurements Promote Industry 4.0, Xi’an, China, 17–20 September 2019; Volume 23, pp. 233–238. [Google Scholar]
- Mukherjee, N.; Chattopadhyaya, A.; Chattopadhyay, S.; Sengupta, S. Discrete-Wavelet-Transform and Stockwell-Transform-Based Statistical Parameters Estimation for Fault Analysis in Grid-Connected Wind Power System. IEEE Syst. J. 2020, 14, 4320–4328. [Google Scholar] [CrossRef]
- Niu, Y.; Yang, T.; Yang, F.; Feng, X.; Zhang, P.; Li, W. Harmonic analysis in distributed power system based on IoT and dynamic compressed sensing. Energy Rep. 2022, 8, 2363–2375. [Google Scholar] [CrossRef]
- Baraniuk, R.G.; Candes, E.; Nowak, R.; Vetterli, M. Compressive sampling. IEEE Signal Process. Mag. 2008, 25, 12–13. [Google Scholar] [CrossRef]
- Ramu Naidu, R.; Murthy, C.R. Construction of unimodular tight frames for compressed sensing using majorization-minimization. Signal Process. 2020, 172, 107516. [Google Scholar] [CrossRef]
- Lydia, M.; Kumar, G.E.P.; Levron, Y. Detection of Electricity Theft based on Compressed Sensing. In Proceedings of the 2019 5th International Conference on Advanced Computing and Communication Systems, ICACCS 2019, Coimbatore, India, 15–16 March 2019; Volume 1, pp. 995–1000. [Google Scholar] [CrossRef]
- Inga-Ortega, J.; Inga-Ortega, E.; Gómez, C.; Hincapié, R. Electrical load curve reconstruction required for demand response using compressed sensing techniques. In Proceedings of the 2017 IEEE PES Innovative Smart Grid Technologies Conference—Latin America, ISGT Latin America 2017, Quito, Ecuador, 20–22 September 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Jandan, F.; Khokhar, S.; Shaha, S.A.A.; Abbasi, F. Recognition and classification of power quality disturbances by DWT-MRA and SVM classifier. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 368–377. [Google Scholar] [CrossRef] [Green Version]
- Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef]
- Mishra, M. Power quality disturbance detection and classification using signal processing and soft computing techniques: A comprehensive review. Int. Trans. Electr. Energy Syst. 2019, 29, 1–42. [Google Scholar] [CrossRef]
- Huang, K.; Xiang, Z.; Deng, W.; Tan, X.; Yang, C. Reweighted Compressed Sensing-Based Smart Grids Topology Reconstruction with Application to Identification of Power Line Outage. IEEE Syst. J. 2020, 14, 4329–4339. [Google Scholar] [CrossRef]
- Xiao, J.; Hu, F.; Shao, Q.; Li, S. Low-complexity compressed sensing reconstruction method for heart signal biometric recognition. Sensors 2019, 19, 5330. [Google Scholar] [CrossRef] [PubMed]
- Kerdjidj, O.; Ramzan, N.; Ghanem, K.; Amira, A.; Chouireb, F. Fall detection and human activity classification using wearable sensors and compressed sensing. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 349–361. [Google Scholar] [CrossRef]
- Gołowicz, D.; Kasprzak, P.; Kazimierczuk, K. Enhancing compression level for more efficient compressed sensing and other lessons from NMR spectroscopy. Sensors 2020, 20, 1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Samples per Cycle | Visualize the Harmonic No. | |
---|---|---|
The classical method for harmonic detection using DFT | Greater than 64 | 32 |
The proposed method for harmonic detection by compressed sensing (CS) | Less than 32 | 32 |
Measurement Matrix | Linear Transformation | Application | Results | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Author, Year | Objectives | Bernoulli | Gaussian | Single Pixel | DFT | DCT | DGT | Theoretical | Practical | Error (%) |
Kahane, 2016 [20] | Harmonic detection with CS | - | - | - | - | - | - | |||
Yang, 2016 [21] | Harmonic detection with CS | - | - | - | - | - | 1.8 | |||
Majidi, 2017 [19] | Distribution system state estimation with CS | - | - | - | - | - | 0.50 | |||
Palczynska, 2020 [17] | Harmonic detection with CS | - | - | - | - | - | 1.00 | |||
Mukherjee, 2020 [26] | Estimation for fault analysis with CS | - | - | - | - | - | - | |||
Daponte, 2021 [22] | A reduced-code method for integral nonlinearity testing in DACs | - | - | - | - | 0.044 RMSE | ||||
Andras, 2021 [24] | Compressed sensing with continuous parametric reconstruction | - | - | - | - | - | - | - | ||
Niu, 2022 [27] | Harmonic detection with CS | - | - | - | - | - | 0.15 | |||
Present work | Harmonic detection with CS | - | - | - | - | 1.78 |
Dimensions | |
K | Number of nonzero entries in a K-sparse vector s |
m | Number of data snapshots (i.e., columns of X) |
n | Dimension of the state, x Rn |
p | Dimension of the measurement or output variable, y Rp |
Vectors | |
s | Sparse vector, s Rn |
x | Original signal |
Reconstructed signal | |
y | Vector of measurements, y Rp |
Matrix | |
C | Measurement matrix |
Dictionary matrix | |
Orthonormal basis (e.g., Fourier, wavelet, Gabor, etc.) | |
Inverse orthonormal basis (e.g., Fourier, wavelet, Gabor, etc.) | |
Projection matrix | |
Norms | |
L0 pseudo-norm of a vector x, the number of nonzero elements in x | |
L1-norm of a vector x given by | |
L2-norm of a vector x given by | |
Transform | |
Discrete cosine transform | |
Discrete Fourier transform | |
Discrete Gabor transform | |
Discrete Radon transform | |
Discrete wavelet transform | |
Singular-value decomposition | |
Discrete cosine inverse transform | |
Harmonic | |
Total harmonic distortion | |
RMS value of the fundamental component | |
RMS value of the nth harmonic voltage | |
h | Harmonic (2,3,4…) |
Error | |
Approximation value | |
I | Pattern value |
Percent error | |
Relative error | |
Absolute error |
Parameter | Measure |
---|---|
THD I | 74.25% |
Fundamental Amplitude | 64.65 mA |
Harmonic 3 | 37.65 mA |
Harmonic 5 | 16.40 mA |
Harmonic 7 | 15.94 mA |
Harmonic 9 | 10.43 mA |
Harmonic 11 | 8.49 mA |
Harmonic 13 | 7.87 mA |
Harmonic 15 | 7.15 mA |
Harmonic 17 | 6.71 mA |
Harmonic 19 | 3.94 mA |
Harmonic 21 | 3.04 mA |
Number of samples per cycle | 64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaya, L.; Inga, E. Compressed Sensing Technique for the Localization of Harmonic Distortions in Electrical Power Systems. Sensors 2022, 22, 6434. https://doi.org/10.3390/s22176434
Amaya L, Inga E. Compressed Sensing Technique for the Localization of Harmonic Distortions in Electrical Power Systems. Sensors. 2022; 22(17):6434. https://doi.org/10.3390/s22176434
Chicago/Turabian StyleAmaya, Luis, and Esteban Inga. 2022. "Compressed Sensing Technique for the Localization of Harmonic Distortions in Electrical Power Systems" Sensors 22, no. 17: 6434. https://doi.org/10.3390/s22176434