Potentiometric Electronic Tongue for Quantitative Ion Analysis in Natural Mineral Waters
<p>Illustration of the experimental setup.</p> "> Figure 2
<p>Triplicate dynamic potential responses of ISEs 1–6 observed for all the water samples, except MT, applying the first measurement protocol (MilliQ water background).</p> "> Figure 3
<p>Triplicate dynamic potential responses of ISEs 1–6 observed for the MT sample at the beginning, middle and end of the entire experimental testing of the sample pool, applying the first measurement protocol (MilliQ water background).</p> "> Figure 4
<p>Triplicate dynamic potential response of ISEs 1–6 observed for all the water samples, except MT, applying the second measurement protocol (1.0 × 10<sup>−6</sup> M KCl background).</p> "> Figure 5
<p>Triplicate dynamic potential responses of ISEs 1–6 observed for the MT sample at the beginning, middle and end of the entire experimental testing of the sample pool, applying the first measurement protocol (1.0 × 10<sup>−6</sup> M KCl background).</p> "> Figure 6
<p>Radar plot of the final potential displayed by each electrode (1–6) in each water sample. Each line connects the data related to the same sample.</p> "> Figure 7
<p>Principal component analysis. Plot of PC1 versus PC2 calculated for the pool of samples and including the three MT repetitions along the analysis.</p> "> Figure 8
<p>Plot of the conductivity of each sample versus PC1 for the pool of samples and including the three MT repetitions along the analysis. Regions are distinguished for high (dark green), medium (light green) and low sample conductivity.</p> "> Figure 9
<p>Calibration and cross-validation models (predicted versus true concentration values) obtained for all the ions tested in the mineral water samples.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Preparation of the Ion-Selective Electrodes
2.3. Procedure for the Analysis of the Samples
3. Results
3.1. Investigation of the Response of the Electrodes Conforming the ET toward an Accurate Measurement Protocol
3.2. Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burlingame, G.A.; Dietrich, A.; Whelton, A.J. Understanding the basics of tap water taste. J. Am. Water Work. Assoc. 2007, 99, 100–111. [Google Scholar] [CrossRef]
- Platikanov, S.; Garcia, V.; Fonseca, I.; Rullán, E.; Devesa, R.; Tauler, R. Influence of minerals on the taste of bottled and tap water: A chemometric approach. Water Res. 2013, 47, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.H.; Jones, R.R.; Brender, J.D.; de Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Villanueva, C.M.; van Breda, S.G. Drinking Water Nitrate and Human Health: An Updated Review. Int. J. Environ. Res. Public Health 2018, 15, 1557. [Google Scholar] [CrossRef] [PubMed]
- Quattrini, S.; Pampaloni, B.; Brandi, M.L. Natural mineral waters: Chemical characteristics and health effects. Clin. Cases Miner. Bone Metab. 2016, 13, 173–180. [Google Scholar] [CrossRef]
- Wynn, E.; Raetz, E.; Burckhardt, P. The composition of mineral waters sourced from Europe and North America in respect to bone health: Composition of mineral water optimal for bone. Br. J. Nutr. 2008, 101, 1195–1199. [Google Scholar] [CrossRef]
- Vlasov, Y.; Legin, A.; Rudnitskaya, A.; Di Natale, C.; D’Amico, A. Nonspecific sensor arrays (“electronic tongue”) for chemical analysis of liquids (IUPAC Technical Report). Pure Appl. Chem. 2005, 77, 1965–1983. [Google Scholar] [CrossRef]
- Atas, H.B.; Kenar, A.; Tastekin, M. An electronic tongue for simultaneous determination of Ca2+, Mg2+, K+ and NH4+ in water samples by multivariate calibration methods. Talanta 2020, 217, 121110. [Google Scholar] [CrossRef]
- Mahato, M.; Adhikari, B. Monitoring of drinking water quality: A preliminary approach by an electronic tongue based on functionalized polymer membrane electrodes. Anal. Methods-Uk 2017, 9, 6019–6031. [Google Scholar] [CrossRef]
- Gutierrez-Capitan, M.; Brull-Fontsere, M.; Jimenez-Jorquera, C. Organoleptic Analysis of Drinking Water Using an Electronic Tongue Based on Electrochemical Microsensors. Sensors 2019, 19, 1435. [Google Scholar] [CrossRef]
- Legin, A.; Rudnitskaya, A.; Vlasov, Y.; Di Natale, C.; Mazzone, E.; D’Amico, A. Application of electronic tongue for quantitative analysis of mineral water and wine. Electroanalysis 1999, 11, 814–820. [Google Scholar] [CrossRef]
- Cortina, M.; Duran, A.; Alegret, S.; del Valle, M. A sequential injection electronic tongue employing the transient response from potentiometric sensors for anion multidetermination. Anal. Bioanal. Chem. 2006, 385, 1186–1194. [Google Scholar] [CrossRef] [PubMed]
- Calvo, D.; Grossl, M.; Cortina, M.; del Valle, M. Automated SIA system using an array of potentiometric sensors for determining alkaline-earth ions in water. Electroanalysis 2007, 19, 644–651. [Google Scholar] [CrossRef]
- Gutierrez, M.; Moo, V.M.; Alegret, S.; Leija, L.; Hernandez, P.R.; Munoz, R.; del Valle, M. Electronic tongue for the determination of alkaline ions using a screen-printed potentiometric sensor array. Mikrochim. Acta 2008, 163, 81–88. [Google Scholar] [CrossRef]
- Moreno, L.; Merlos, A.; Abramova, N.; Jimenez, C.; Bratov, A. Multi-sensor array used as an “electronic tongue” for mineral water analysis. Sens. Actuators B-Chem. 2006, 116, 130–134. [Google Scholar] [CrossRef]
- Martinez-Manez, R.; Soto, J.; Garcia-Breijo, E.; Gil, L.; Ibanez, J.; Llobet, E. An “electronic tongue” design for the qualitative analysis of natural waters. Sens. Actuators B-Chem. 2005, 104, 302–307. [Google Scholar] [CrossRef]
- Garcia-Breijo, E.; Atkinson, J.; Gil-Sanchez, L.; Masot, R.; Ibanez, J.; Garrigues, J.; Glanc, M.; Laguarda-Miro, N.; Olguin, C. A comparison study of pattern recognition algorithms implemented on a microcontroller for use in an electronic tongue for monitoring drinking waters. Sens. Actuators A-Phys 2011, 172, 570–582. [Google Scholar] [CrossRef]
- Miras, M.; Garcia, M.S.; Martinez, V.; Ortuno, J.A. Inexpensive ion-selective electrodes for the simultaneous monitoring of potassium and nitrate concentrations in nutrient solutions. Anal. Methods-UK 2021, 13, 3511–3520. [Google Scholar] [CrossRef]
- Cuartero, M.; Ortuno, J.A.; Garcia, M.S.; Sanchez, G.; Mas-Montoya, M.; Curiel, D. Benzodipyrrole derivates as new ionophores for anion-selective electrodes: Improving potentiometric selectivity towards divalent anions. Talanta 2011, 85, 1876–1881. [Google Scholar] [CrossRef]
- Gonzalez-Franco, J.A.; Ruiz, A.; Ortuno, J.A. Dynamic Potentiometry with an Ion-Selective Electrode: A Tool for Qualitative and Quantitative Analysis of Inorganic and Organic Cations. Chemosensors 2022, 10, 116. [Google Scholar] [CrossRef]
- Cuartero, M.; Carretero, A.; Garcia, M.S.; Ortuno, J.A. New Potentiometric Electronic Tongue for Analysing Teas and Infusions. Electroanalysis 2015, 27, 782–788. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
Membrane | Components | ISE | |||||||
---|---|---|---|---|---|---|---|---|---|
PVC | Plasticizer | Ion Exchanger | |||||||
mg | wt.% | Compound | mg | wt.% | Compound | mg | wt.% | ||
1 | 0.1004 | 33.14 | NPOE | 0.2011 | 66.37 | KTClPB | 0.0015 | 0.49 | 1 |
2 | 0.0999 | 32.97 | NPOE | 0.1989 | 66.23 | TDMACl | 0.0015 | 0.50 | 2 |
3 | 0.1004 | 31.40 | TCP | 0.2177 | 68.10 | KTClPB | 0.0016 | 0.50 | 3 |
4 | 0.1000 | 32.54 | TCP | 0.2057 | 66.94 | TDMACl | 0.0016 | 0.52 | 4 |
5 | 0.1011 | 32.82 | DOS | 0.2047 | 66.46 | KTClPB | 0.0022 | 0.71 | 5 |
6 | 0.0730 | 33.06 | DOS | 0.1465 | 66.35 | TDMACl | 0.0013 | 0.59 | 6 |
MT | C1 | G | M | S | T | Gr | C2 | B | |
---|---|---|---|---|---|---|---|---|---|
Conductivity (µS cm−1) | 1937 | 575 | 420 | 1396 | 55 | 71 | 293 | 625 | 45 |
Ion Concentration (mg L−1) | MT | C1 | G | M | S | T | Gr | C2 | B |
---|---|---|---|---|---|---|---|---|---|
Ca2+ | 69.6 | 69.6 | 41.9 | 61.0 | 5.8 | 3.1 | 25.6 | 60.2 | 1.0 |
Na+ | 121.7 | 2.0 | 8.5 | 74.0 | 2.2 | 2.3 | 5.6 | 4.4 | 3.4 |
Mg2+ | 44.7 | 21.7 | 10.0 | 51.1 | 1.0 | 3.4 | 9.9 | 30.0 | 1.0 |
Cl− | 154.0 | 2.2 | 26.0 | 170.0 | 0.7 | 12.8 | 8.7 | 9.7 | 7.4 |
NO3− | 5.6 | 4.0 | 6.2 | 6.4 | 6.6 | 3.5 | 7.3 | 4.3 | 3.3 |
SO42− | 364.9 | 19.2 | 24.8 | 131.0 | 2.1 | 6.3 | 17.9 | 22.3 | 3.7 |
HCO3− | 264.4 | 317.3 | 179.8 | 292.2 | 28.2 | 24.7 | 130.4 | 373.7 | 7.0 |
(#1) | (#3) | (#5) | (#2) | (#4) | (#6) | |
---|---|---|---|---|---|---|
NPOE–KTClPB (#1) | 1.00 | −0.64 | −0.20 | 0.83 | 0.76 | 0.97 |
TCP–KTClPB (#3) | −0.64 | 1.00 | 0.81 | −0.59 | −0.59 | −0.51 |
DOS–KTClPB (#5) | −0.20 | 0.81 | 1.00 | −0.33 | −0.40 | −0.07 |
NPOE–TDMACl (#2) | 0.83 | −0.59 | −0.33 | 1.00 | 0.99 | 0.84 |
TCP–TDMACl (#4) | 0.76 | −0.59 | −0.40 | 0.99 | 1.00 | 0.76 |
DOS–TDMACl (#6) | 0.97 | −0.51 | −0.07 | 0.84 | 0.76 | 1.00 |
ISE | Cl− | NO3− | SO42− | HCO3− | Mg2+ | Na+ | Ca2+ | K+ |
---|---|---|---|---|---|---|---|---|
NPOE–KTClPB (#1) | 34.3 | 66.4 | 89.7 | −4112.6 | −436.8 | 33.9 | −329.9 | 1.5 |
NPOE–TDMACl (#2) | −436.3 | −21.9 | −929.7 | 1459.5 | 82.1 | −329.5 | 4.8 | −16.3 |
TCP–KTClPB (#3) | 943.3 | 9.3 | 1939.9 | 1174.9 | 256.6 | 685.4 | 1432.7 | 33.4 |
TCP–TDMACl (#4) | −657.9 | −43.3 | −1404.2 | 2793.7 | 187.0 | −498.3 | 249.3 | −24.6 |
DOS–KTClPB (#5) | 2061.4 | 26.6 | 2212.5 | −421.1 | 118.7 | 783.8 | −983.5 | 38.2 |
DOS–TDMACl (#6) | 215.8 | 48.8 | 466.9 | −2928.4 | −277.3 | 167.4 | −534.5 | 8.0 |
Offset | 34.0 | 36.1 | 8.1 | −171.0 | −64.7 | −0.7 | −99.5 | −0.2 |
Calibration | Cross-Validation | Method | |||
---|---|---|---|---|---|
Ion | R2 | CC | R2 | CC | |
Cl− | 0.93 | 0.97 | 0.87 | 0.94 | PCR 2 |
NO3− | 0.90 | 0.95 | 0.50 | 0.81 | PCR 3 |
SO42− | 0.89 | 0.95 | 0.29 | 0.59 | PCR 2 |
HCO3− | 0.94 | 0.97 | 0.86 | 0.93 | PCR 3 |
Mg2+ | 0.94 | 0.97 | 0.89 | 0.95 | PCR 3 |
Na+ | 0.95 | 0.98 | 0.75 | 0.90 | PCR 2 |
Ca2+ | 1.00 | 1.00 | 0.98 | 0.99 | PLS 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuartero, M.; Ruiz, A.; Galián, M.; Ortuño, J.A. Potentiometric Electronic Tongue for Quantitative Ion Analysis in Natural Mineral Waters. Sensors 2022, 22, 6204. https://doi.org/10.3390/s22166204
Cuartero M, Ruiz A, Galián M, Ortuño JA. Potentiometric Electronic Tongue for Quantitative Ion Analysis in Natural Mineral Waters. Sensors. 2022; 22(16):6204. https://doi.org/10.3390/s22166204
Chicago/Turabian StyleCuartero, María, Alberto Ruiz, Manuel Galián, and Joaquín A. Ortuño. 2022. "Potentiometric Electronic Tongue for Quantitative Ion Analysis in Natural Mineral Waters" Sensors 22, no. 16: 6204. https://doi.org/10.3390/s22166204
APA StyleCuartero, M., Ruiz, A., Galián, M., & Ortuño, J. A. (2022). Potentiometric Electronic Tongue for Quantitative Ion Analysis in Natural Mineral Waters. Sensors, 22(16), 6204. https://doi.org/10.3390/s22166204