Analysis of the Impact of Changes in Echo Signal Parameters on the Uncertainty of Distance Measurements in p-ToF Laser Rangefinders
<p>Approximation of a sampled signal with a second−degree polynomial (SDPA).</p> "> Figure 2
<p>Example of the pulse signal functions <span class="html-italic">f</span>(<span class="html-italic">x</span>) and sample sets <span class="html-italic">f</span>(<span class="html-italic">x<sub>i</sub></span>) used in the simulations. The plot was drawn for (<b>a</b>) even (<span class="html-italic">A</span> = 1, <span class="html-italic">τ</span> = 50 ns, <span class="html-italic">f<sub>s</sub></span> = 50 MHz, noise <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>∈</mo> <mi>N</mi> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mo>,</mo> <mn>0.1</mn> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </semantics></math> and (<b>b</b>) odd (<span class="html-italic">A</span> = 1, <span class="html-italic">τ</span> = 50 ns, <span class="html-italic">f<sub>s</sub></span> = 250 MHz, noise <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>∈</mo> <mi>N</mi> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mo>,</mo> <mn>0.1</mn> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </semantics></math> numbers of samples.</p> "> Figure 3
<p>Algorithm of simulation trials.</p> "> Figure 4
<p>Dependence of measurement uncertainty on the signal-to-noise ratio (SNR). Parameters of generated pulses are shown in <a href="#sensors-22-05973-t001" class="html-table">Table 1</a> Block 1.</p> "> Figure 5
<p>Dependence of measurement uncertainty on the signal-to-noise ratio (SNR). Parameters of generated pulses are shown in <a href="#sensors-22-05973-t001" class="html-table">Table 1</a> Block 2.</p> "> Figure 6
<p>Dependence of measurement uncertainty on sampling frequency <span class="html-italic">f<sub>smp</sub></span>. Parameters of generated pulses are shown in <a href="#sensors-22-05973-t002" class="html-table">Table 2</a> Block 3.</p> "> Figure 7
<p>Dependence of measurement uncertainty on sampling frequency <span class="html-italic">f<sub>smp</sub></span>. Parameters of generated pulses are shown in <a href="#sensors-22-05973-t002" class="html-table">Table 2</a> Block 4.</p> "> Figure 8
<p>Dependence of measurement uncertainty on pulse width for <span class="html-italic">τ</span> for SNR = 100. Parameters of generated pulses are shown in <a href="#sensors-22-05973-t003" class="html-table">Table 3</a> Block 5.</p> "> Figure 9
<p>Dependence of measurement uncertainty on pulse width <span class="html-italic">τ</span> for <span class="html-italic">f<sub>smp</sub></span> = 1 GHz. Parameters of generated pulses are shown in <a href="#sensors-22-05973-t003" class="html-table">Table 3</a> Block 6.</p> "> Figure 10
<p>Plots of the dependance of the measurement’s uncertainty calculated using Equation (16) for signal parameters shown in <a href="#sensors-22-05973-t004" class="html-table">Table 4</a>. Comparable results are shown in <a href="#sensors-22-05973-f004" class="html-fig">Figure 4</a>.</p> "> Figure 11
<p>Plots of the dependance of the measurement’s uncertainty calculated using Equation (16) for signal parameters shown in <a href="#sensors-22-05973-t004" class="html-table">Table 4</a>. Comparable results are shown in <a href="#sensors-22-05973-f007" class="html-fig">Figure 7</a>.</p> "> Figure 12
<p>Plots of the dependance of the measurement’s uncertainty calculated using Equation (16) for signal parameters shown in <a href="#sensors-22-05973-t004" class="html-table">Table 4</a>. Comparable results are shown in <a href="#sensors-22-05973-f008" class="html-fig">Figure 8</a>.</p> ">
Abstract
:1. Introduction
2. Assumptions
3. Methodology of Experiments
- Signal-to-noise ratio—(SNR), where SNR ,
- Sampling frequency—,
- Echo pulse FWHM—.
4. Results
4.1. Examination of the Influence of Changes in Signal-to-Noise Ratio on the Measurement Uncertainty (SNR)
4.2. Examination of the Influence of Changes in Sampling Frequency fsmp on the Measurement Uncertainty
4.3. Examination of the Influence of Changes in Pulse Width on the Measurement Uncertainty
5. Discussion
- -
- no overlapping of the echo signals, 3 m spacing between targets;
- -
- SNR = 20 dB (which in our case represents SNR = 10);
- -
- sampling frequency ;
- -
- pulse width at half maximum .
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rüeger, J.M. Electronic Distance Measurement; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Piątek, S. Measuring Distance with Light, Hamamatsu Corporation & New Jersey Institute of Technology. Available online: https://hub.hamamatsu.com/us/en/application-notes/automotive/measuring-distance-with-light.html (accessed on 5 May 2022).
- Hyyppä, J.; Hyyppä, H.; Litkey, P.; Yu, X.; Haggrén, H.; Rönnholm, P.; Pyysalo, U.; Pitkänen, J.; Maltamo, M. Algorithms and Methods of Airborne Laser Scanning for Forest Measurements. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 36, 82–89. [Google Scholar]
- Bretar, F.; Chauve, A.; Mallet, C.; Jutzi, B. Full waveform LiDAR data: A challenging task for the forthcoming years. In Proceedings of the XXIst ISPRS Congress, Beijing, China, 3–11 July 2008; p. 37. [Google Scholar]
- Zwally, H.J.; Schutz, B.; Abdalati, W.; Abshire, J.; Bentley, C.; Brenner, A.; Bufton, J.; Dezio, J.; Hancock, D.; Harding, D. 411 ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J. Geodyn. 2002, 34, 405–445. [Google Scholar] [CrossRef] [Green Version]
- Hilbert, C.; Schmullius, C. Influence of Surface Topography on ICESat/GLAS Forest Height Estimation and Waveform Shape. Remote Sens. 2012, 4, 2210–2235. [Google Scholar] [CrossRef] [Green Version]
- Mallet, C.; Bretar, F. Full-waveform topographic lidar: State-of-the-art. ISPRS J. Photogramm. Remote Sens. 2009, 64, 1–16. [Google Scholar] [CrossRef]
- Vasile, I.; Tudor, E.; Sburlan, I.-C.; Gheți, M.-A.; Popa, G. Experimental Validation of LiDAR Sensors Used in Vehicular Applications by Using a Mobile Platform for Distance and Speed Measurements. Sensors 2021, 21, 8147. [Google Scholar] [CrossRef]
- Higham, N. Accuracy and Stability of Numerical Algorithms, 2nd ed.; SIAM: Philadelphia, PA, USA, 2002; p. 5. [Google Scholar]
- Jutzi, B.; Neulist, J.; Stilla, U. High-resolution waveform acquisition and analysis for pulsed lasers. In Proceedings of the High-resolution Earth Imaging for Geospatial Information, Hannover, Germany, 17–20 May 2005. [Google Scholar]
- Chauve, A.; Mallet, C.; Bretar, F.; Durrieu, S.; Deseilligny, M. Processing Full-Waveform Lidar Data: Modelling Raw Signals. ISPRS Workshop on Laser Scanning and SilviLaser (LS SL), Sep (2007), Espoo, Finland. pp. 102–107. Available online: https://hal-lirmm.ccsd.cnrs.fr/lirmm-00293129 (accessed on 30 July 2022).
- Steinvall, O.; Grönwall, C.; Gustafsson, F.; Chevalier, T. Influence of laser radar sensor parameters on range-measurement and shape-fitting uncertainties. Opt. Eng. 2006, 46, 106201. [Google Scholar] [CrossRef] [Green Version]
- Muzal, M.; Zygmunt, M.; Knysak, P.; Drozd, T.; Jakubaszek, M. Methods of Precise Distance Measurements for Laser Rangefinders with Digital Acquisition of Signals. Sensors 2021, 21, 6426. [Google Scholar] [CrossRef]
- Li, X.; Bi, T.; Wang, Z.; Xu, L.; He, Y. Damped Gauss-Newton based online ranging for point extraction from low SNR and high overlapping waveforms. Measurement 2022, 199, 111479. [Google Scholar] [CrossRef]
- Kilpelä, A.J. Pulsed Time-of-Flight Laser Range Finder Techniques for Fast, High Precision Measurement Applications; Oulu Press, University of Oulu: Oulu, Finland, 2004. [Google Scholar] [CrossRef]
- Kilpelä, A.; Ylitalo, J.; Määttä, K.; Kostamovaara, J. Timing discriminator for pulsed time-of-flight laser rangefinding measurements. Rev. Sci. Instrum. 1998, 69, 1978–1984. [Google Scholar] [CrossRef] [Green Version]
- Zheng, R.; Wu, G. Constant fraction discriminator in pulsed time-of-flight laser rangefinding. Front. Optoelectron. 2012, 8332, 833208. [Google Scholar] [CrossRef]
- Palojärvi, P. Integrated Electronic and Optoelectronic Circuits and Devices for Pulsed Time-of-Flight Laser Rangefinding; Oulu Press, University of Oulu: Oulu, Finland, 2003; Available online: http://jultika.oulu.fi/files/isbn9514269667.pdf (accessed on 5 May 2022).
- SteinVal, O.K. Effects of Target Shape and Reflection on Laser Radar Cross Sections. Appl. Opt. 2000, 39, 4381–4391. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Popescu, S. waveformlidar: An R Package, for Waveform LiDAR Processing and Analysis. Remote Sens. 2019, 11, 2552. [Google Scholar] [CrossRef] [Green Version]
- Johnson, S.; Cain, S. Bound on range precision for shot-noise limited ladar systems. Appl. Opt. 2008, 47, 5147–5154. [Google Scholar] [CrossRef] [PubMed]
- Wojtanowski, J.; Zygmunt, M.; Drozd, T.; Jakubaszek, M.; Życzkowski, M.; Muzal, M. Distinguishing Drones from Birds in a UAV Searching Laser Scanner Based on Echo Depolarization Measurement. Sensors 2021, 21, 5597. [Google Scholar] [CrossRef] [PubMed]
- Muzal, M.; Mierczyk, Z.; Zygmunt, M.; Wojtanowski, J.; Piotrowski, W. Measurement of vehicles speed with full waveform lidar. In Laser Technology 2016: Progress and Applications of Lasers; SPIE Proceedings: San Diego, CA, USA, 2016; Volume 10159, p. 1015914. [Google Scholar] [CrossRef]
- Wojtanowski, J.; Zygmunt, M.; Muzal, M.; Knysak, P.; Młodzianko, A.; Gawlikowski, A.; Drozd, T.; Kopczyński, K.; Mierczyk, Z.; Kaszczuk, M.; et al. Performance verification of a LIF-LIDAR technique for stand-off detection and classification of biological agents. Opt. Laser Technol. 2015, 67, 25–32. [Google Scholar] [CrossRef]
- Mierczyk, Z.; Zygmunt, M.; Kaszczuk, M.; Muzal, M. Multispectral Laser Head for Terrain Identification and Analysis. Acta Phys. Pol. A 2013, 124, 502–504. [Google Scholar] [CrossRef]
Block Number | SNR | [ns] | [MHz] |
---|---|---|---|
1 | 10–100 | 25, 50, 75, 100 | 250 |
2 | 10–100 | 50 | 250, 500, 750, 1000 |
Block Number | SNR | [ns] | [MHz] |
---|---|---|---|
3 | 100 | 25, 50, 75, 100 | 100–1000 |
4 | 25, 50, 75, 100 | 50 | 100–1000 |
Block Number | SNR | [ns] | [MHz] |
---|---|---|---|
5 | 100 | 5–100 | 250, 500, 750, 1000 |
6 | 25, 50, 75, 100 | 5–100 | 1000 |
Figure Number | SNR | [ns] | [MHz] |
---|---|---|---|
10 | 10–100 | 25, 50, 75, 100 | 250 |
11 | 25, 50, 75, 100 | 50 | 100–1000 |
12 | 100 | 5–100 | 250, 500, 750, 1000 |
Trial Number | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Sampling frequency fpr (MHZ) | 333 | ||||
FWHM τ [ns] | 39 | 78 | 156 | 39 | 156 |
SNR | 181 | 631 | |||
Standard deviation of the trial-data analysis, σs (cm) | 1.05 | 1.17 | 1.70 | 0.27 | 0.46 |
Calculated standard deviation σs (cm), k = 1.0 | 0.89 | 1.27 | 1.79 | 0.26 | 0.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muzal, M.; Zygmunt, M. Analysis of the Impact of Changes in Echo Signal Parameters on the Uncertainty of Distance Measurements in p-ToF Laser Rangefinders. Sensors 2022, 22, 5973. https://doi.org/10.3390/s22165973
Muzal M, Zygmunt M. Analysis of the Impact of Changes in Echo Signal Parameters on the Uncertainty of Distance Measurements in p-ToF Laser Rangefinders. Sensors. 2022; 22(16):5973. https://doi.org/10.3390/s22165973
Chicago/Turabian StyleMuzal, Michał, and Marek Zygmunt. 2022. "Analysis of the Impact of Changes in Echo Signal Parameters on the Uncertainty of Distance Measurements in p-ToF Laser Rangefinders" Sensors 22, no. 16: 5973. https://doi.org/10.3390/s22165973
APA StyleMuzal, M., & Zygmunt, M. (2022). Analysis of the Impact of Changes in Echo Signal Parameters on the Uncertainty of Distance Measurements in p-ToF Laser Rangefinders. Sensors, 22(16), 5973. https://doi.org/10.3390/s22165973