Diagnosis of Induced Resistance State in Tomato Using Artificial Neural Network Models Based on Supervised Self-Organizing Maps and Fluorescence Kinetics
<p>Structure of the CPANN model.</p> "> Figure 2
<p>Structure of the SKN model.</p> "> Figure 3
<p>Structure of the XY-F model.</p> "> Figure 4
<p>The supervised SOM clusters demonstrates the discrimination between the three applied treatments, represented as class 1 (Control, colored in purple), class 2 (FORL colored in red), and class 3 (Bion + FORL, colored in green).</p> "> Figure 5
<p>Analysis of defense genes <span class="html-italic">CHI3</span>, <span class="html-italic">AOC</span>, <span class="html-italic">LOX</span>, <span class="html-italic">PR-1a,</span> and <span class="html-italic">GLUA</span> in tomato leaves challenged with <span class="html-italic">Fusarium oxysporum</span> f. sp. <span class="html-italic">radicis-lycopersici</span> (FORL), after induction treatment with Bion, at 48 hpi. Error bars indicate the variation based on three biological replicates. The asterisk denotes substantial deviation with respect to the control treatment, according to Duncan’s test, <span class="html-italic">p</span> ≤ 0.05.</p> "> Figure 6
<p>Analysis of defense genes <span class="html-italic">CHI3</span>, <span class="html-italic">AOC</span>, <span class="html-italic">LOX</span>, <span class="html-italic">PR-1</span>a, and <span class="html-italic">GLUA</span> in tomato roots challenged with <span class="html-italic">Fusarium oxysporum</span> f. sp. <span class="html-italic">radicis-lycopersici</span> (FORL), after induction treatment with Bion, at 48 hpi. Error bars indicate the variation based on three biological replicates. The asterisk denotes substantial deviation with respect to the control treatment, according to Duncan’s test, <span class="html-italic">p</span> ≤ 0.05.</p> "> Figure 7
<p>Analysis of defense genes <span class="html-italic">CHI3</span>, <span class="html-italic">AOC</span>, <span class="html-italic">LOX</span>, <span class="html-italic">PR-1</span>a, and <span class="html-italic">GLUA</span> in tomato leaves challenged with <span class="html-italic">Fusarium oxysporum</span> f. sp. <span class="html-italic">radicis-lycopersici</span> (FORL), after induction treatment with Bion, at 72 hpi. Error bars indicate the variation based on three biological replicates. The asterisk denotes substantial deviation with respect to the control treatment, according to Duncan’s test, <span class="html-italic">p</span> ≤ 0.05.</p> "> Figure 8
<p>Analysis of defense genes <span class="html-italic">CHI3</span>, <span class="html-italic">AOC</span>, <span class="html-italic">LOX</span>, <span class="html-italic">PR-1a,</span> and <span class="html-italic">GLUA</span> in tomato roots challenged with Fusarium oxysporum f. sp. radicis-lycopersici (FORL), after induction treatment with Bion, at 72 hpi. Error bars indicate the standard deviation variation based on three biological replicates. The asterisk indicates denotes substantial deviation with respect to the control treatment, according to Duncan’s test, <span class="html-italic">p</span> ≤ 0.05.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of Fusarium oxysporum f. sp. Radicis-Lycopersici and Inoculation
2.2. Growth and Inoculation of Tomato Plants
2.3. Fluorescence Kinetics Parameters
2.4. Supervised Self Organizing Maps (SOMs) Models
2.5. RNA Extraction from Tomato Plants and Relative Gene Expression Analysis
2.6. Statistical Analysis for Gene Expression
3. Results and Discussion
3.1. Classification Results Obtained from the Fluorescence Data
3.2. Confirmation of the Supervised SOM Accuracy in Prediction of the Prime State of Plants with Gene Expression Data
3.3. Gene Expression Analysis in Tomato Plants Challenged with FORL, 48 and 72 h after Induction Treatment with Bion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Han, L.; Haleem, M.S.; Taylor, M. A novel computer vision-based approach to automatic detection and severity assessment of crop diseases. In Proceedings of the Science and Information Conference (SAl), London, UK, 28–30 July 2015; pp. 638–644. [Google Scholar]
- FAO. Declaration of the World Summit on Food Security; World Summit on Food Security Rome: Rome, Italy, 2009; pp. 1–7. [Google Scholar]
- Kimura, S.; Sinha, N. Tomato (Solanum lycopersicum): A Model Fruit-Bearing Crop. Cold Spring Harb. Protoc. 2008, 11, pdb.emo105. [Google Scholar] [CrossRef] [PubMed]
- Naika, S.; van Lidt de Jeude, J.; De Goffau, M.; Hilmi, M.; van Dam, B. Cultivation of Tomato, Production, Processing and Marketing; CTA Agrodok 17; Agromisa Foundation and CTA: Wageningen, The Netherlands, 2005; p. 92. [Google Scholar]
- Zhang, S.; Huang, W.; Zhang, C. Three-channel convolutional neural networks for vegetable leaf disease recognition. Cogn. Syst. Res. 2019, 53, 31–41. [Google Scholar] [CrossRef]
- Kibriya, H.; Rafique, R.; Ahmad, W.; Adnan, S.M. Tomato leaf disease detection using convolution neural network. In Proceedings of the International Bhurban Conference on Applied Sciences and Technologies (IBCAST), Islamabad, Pakistan, 12–16 January 2021; pp. 346–351. [Google Scholar]
- Vlot, A.C.; Sales, J.H.; Lenk, M.; Bauer, K.; Brambilla, A.; Sommer, A.; Chen, Y.; Wenig, M.; Nayem, S. Systemic propagation of immunity in plants. New Phytol. 2021, 229, 1234–1250. [Google Scholar] [CrossRef] [PubMed]
- Walters, D.; Walsh, D.; Newton, A.; Lyon, G. Induced resistance for plant disease control: Maximizing the efficacy of resistance elicitors. Phytopathology 2013, 95, 1368–1373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, M.; Wang, W. Recent Advances in Synthetic Chemical Inducers of Plant Immunity. Front. Plant Sci. 2018, 9, 1613. [Google Scholar] [CrossRef] [Green Version]
- Kamou, N.N.; Cazorla, F.; Kandylas, G.; Lagopodi, A. Induction of defense-related genes in tomato plants after treatments with the biocontrol agents Pseudomonas chlororaphis ToZa7 and Clonostachys rosea IK726. Arch. Microbiol. 2020, 202, 257–267. [Google Scholar] [CrossRef]
- Pradhanang, P.M.; Ji, P.; Momol, M.T.; Olson, S.M.; Mayfield, J.L.; Jones, J.B. Application of Acibenzolar-S-Methyl Enhances Host Resistance in Tomato Against Ralstonia solanacearum. Plant Dis. 2005, 89, 989–993. [Google Scholar] [CrossRef] [Green Version]
- Pontes, N.d.C.; Nascimento, A.d.R.; Golynski, A.; Maffia, L.A.; de Oliveira, J.R.; Quezado-Duval, A.M. Intervals and Number of Applications of Acibenzolar-S-Methyl for the Control of Bacterial Spot on Processing Tomato. Plant Dis. 2016, 100, 2126–2133. [Google Scholar] [CrossRef] [Green Version]
- Sandroni, M.; Liljeroth, E.; Mulugeta, T.; Alexandersson, E. Plant resistance inducers (PRIs): Perspectives for future disease management in the field. CAB Rev. 2020, 15, 1–10. [Google Scholar] [CrossRef]
- Gao, Q.M.; Zhu, S.; Kachroo, P.; Kachroo, A. Signal regulators of systemic acquired resistance. Front. Plant Sci. 2015, 6, 228. [Google Scholar] [CrossRef] [Green Version]
- Wasternack, C.; Hause, B. The missing link in jasmonic acid biosynthesis. Nat. Plants 2019, 5, 776–777. [Google Scholar] [CrossRef]
- Sato, I.; Yoshida, S.; Iwamoto, Y.; Aino, M.; Hyakumachi, M.; Shimizu, M.; Takahashi, H.; Ando, S.; Tsushima, S. Suppressive potential of Paenibacillus strains isolated from the tomato phyllosphere against fusarium crown and root rot of tomato. Microbes Environ. 2014, 29, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.Y.; Ye, M.; Li, C.Y.; Wang, R.L.; Wei, X.C.; Luo, S.M.; Zeng, R.S. Priming of anti-herbivore defense in tomato by arbuscular mycorrhizal fungus and involvement of the jasmonate pathway. J. Chem. Ecol. 2013, 39, 1036–1044. [Google Scholar] [CrossRef]
- Moustakas, M.; Calatayud, Á.; Guidi, L. Editorial: Chlorophyll Fluorescence Imaging Analysis in Biotic and Abiotic Stress. Front. Plant Sci. 2011, 12, 658500. [Google Scholar] [CrossRef]
- Kohonen, T. Self-Organization and Associative Memory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 8. [Google Scholar]
- Marini, F. Artificial neural networks in food stuff analyses: Trends and perspectives A review. Anal. Chim. Acta 2009, 635, 121–131. [Google Scholar] [CrossRef]
- Zupan, J.; Marjana, N.; Gasteiger, J. Neural networks with counter-propagation learning strategy used for modelling. Chemom. Intell. Lab. Syst. 1995, 27, 175–187. [Google Scholar] [CrossRef]
- Melssen, W.; Wehrens, R.; Buydens, L. Supervised Kohonen networks for classification problems. Chemom. Intell. Lab. Syst. 2006, 83, 99–113. [Google Scholar] [CrossRef]
- Papageorgiou, G. Chlorophyll fluorescence: An intrinsic probe of photosynthesis. Bioenerg. Photosynth. 1975, 6, 319–371. [Google Scholar]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.G.; Łukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 2016, 38, 102. [Google Scholar] [CrossRef] [Green Version]
- Smillie, R.M.; Nott, R. Heat injury in leaves of alpine, temperate and tropical plants. Funct. Plant Biol. 1979, 6, 135–141. [Google Scholar] [CrossRef]
- Horler, D.N.H.; Barber, J. Principles of remote sensing of plants. Plants Daylight Spectr. 1981, 1981, 43–63. [Google Scholar]
- Kamou, N.N.; Karasali, H.; Menexes, G.; Kasiotis, K.M.; Bon, M.C.; Papadakis, E.N.; Tzelepis, G.D.; Lotos, L.; Lagopodi, A.L. Isolation screening and characterisation of local beneficial rhizobacteria based upon their ability to suppress the growth of Fusarium oxysporum f. sp. radicis-lycopersici and tomato foot and root rot. Biocontrol Sci. Technol. 2015, 25, 928–949. [Google Scholar] [CrossRef]
- Pantazi, X.E.; Moshou, D.; Kasampalis, D.; Tsouvaltzis, P.; Kateris, D. Automatic Detection of Different Harvesting Stages in Lettuce Plants by Using Chlorophyll Fluorescence Kinetics and Supervised Self Organizing Maps (SOMs). In Engineering Applications of Neural Networks. EANN, Communications in Computer and Information Science; Iliadis, L., Papadopoulos, H., Jayne, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 383. [Google Scholar] [CrossRef]
- Stavridou, E.; Giannakis, I.; Karamichali, I.; Kamou, N.N.; Lagiotis, G.; Madesis, P.; Emmanouil, C.; Kungolos, A.; Nianiou-Obeidat, I.; Lagopodi, A. Biosolid-amended soil enhances defense responses in tomato based on metagenomic profile and expression of pathogenesis-related genes. Plants 2021, 10, 2789. [Google Scholar] [CrossRef]
- Llorens, E.; Garcia, A.P.; Capena, L. Advances in induced resistanse by natural compounds: Towards new options for woody crop protection. Sci. Agric. 2016, 74, 90–100. [Google Scholar] [CrossRef]
- Aimé, S.; Alabouvette, C.; Steinberg, C.; Olivain, C. The Endophytic Strain Fusarium oxysporum Fo47: A Good Candidate for Priming the Defense Responses in Tomato Roots. Mol. Plant-Microbe Interact. 2013, 26, 918–926. [Google Scholar] [CrossRef] [Green Version]
- Heitz, T.; Bergey, D.R.; Ryan, C.A. A Gene Encoding a Chloroplast-Targeted Lipoxygenase in Tomato Leaves Is Transiently Induced by Wounding, Systemin, and Methyl Jasmonate. Plant Physiol. 1997, 114, 1085–1093. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.Y.; Zeng, R.S.; Xu, J.F.; Li, J.; Shen, X.; Yihdego, W.G. Interplant communication of tomato plants through underground common mycorrhizal networks. PLoS ONE 2010, 5, e13324. [Google Scholar] [CrossRef] [Green Version]
Real Treatment Class | Accurate Identification of Treatment 1 (Control) | Accurate Identification of Treatment 2 (FORL) | Accurate Identification of Treatment 3 (Bion + FORL) |
---|---|---|---|
Control | 100% | 0% | 0% |
FORL | 0% | 97.22% | 2.78% |
Bion + FORL | 2.78% | 0% | 97.22% |
Real Treatment Class | Accurate Identification of Treatment 1 (Control) | Accurate Identification of Treatment 2 (FORL) | Accurate Identification of Treatment 3 (Bion + FORL) |
---|---|---|---|
Control | 97.22% | 2.78% | 0% |
FORL | 11.11% | 88.89% | 0% |
Bion + FORL | 5.56% | 8.33% | 86.11% |
Real Treatment Class | Accurate Identification of Treatment 1 (Control) | Accurate Identification of Treatment 2 (FORL) | Accurate Identification of Treatment 3 (Bion + FORL) |
---|---|---|---|
Control | 100% | 0% | 0% |
FORL | 8.33% | 88.89% | 2.78% |
Bion + FORL | 0% | 2.78% | 97.22% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantazi, X.E.; Lagopodi, A.L.; Tamouridou, A.A.; Kamou, N.N.; Giannakis, I.; Lagiotis, G.; Stavridou, E.; Madesis, P.; Tziotzios, G.; Dolaptsis, K.; et al. Diagnosis of Induced Resistance State in Tomato Using Artificial Neural Network Models Based on Supervised Self-Organizing Maps and Fluorescence Kinetics. Sensors 2022, 22, 5970. https://doi.org/10.3390/s22165970
Pantazi XE, Lagopodi AL, Tamouridou AA, Kamou NN, Giannakis I, Lagiotis G, Stavridou E, Madesis P, Tziotzios G, Dolaptsis K, et al. Diagnosis of Induced Resistance State in Tomato Using Artificial Neural Network Models Based on Supervised Self-Organizing Maps and Fluorescence Kinetics. Sensors. 2022; 22(16):5970. https://doi.org/10.3390/s22165970
Chicago/Turabian StylePantazi, Xanthoula Eirini, Anastasia L. Lagopodi, Afroditi Alexandra Tamouridou, Nathalie Nephelie Kamou, Ioannis Giannakis, Georgios Lagiotis, Evangelia Stavridou, Panagiotis Madesis, Georgios Tziotzios, Konstantinos Dolaptsis, and et al. 2022. "Diagnosis of Induced Resistance State in Tomato Using Artificial Neural Network Models Based on Supervised Self-Organizing Maps and Fluorescence Kinetics" Sensors 22, no. 16: 5970. https://doi.org/10.3390/s22165970
APA StylePantazi, X. E., Lagopodi, A. L., Tamouridou, A. A., Kamou, N. N., Giannakis, I., Lagiotis, G., Stavridou, E., Madesis, P., Tziotzios, G., Dolaptsis, K., & Moshou, D. (2022). Diagnosis of Induced Resistance State in Tomato Using Artificial Neural Network Models Based on Supervised Self-Organizing Maps and Fluorescence Kinetics. Sensors, 22(16), 5970. https://doi.org/10.3390/s22165970