RSOnet: An Image-Processing Framework for a Dual-Purpose Star Tracker as an Opportunistic Space Surveillance Sensor
<p>Examples of raw macro images. (<b>a</b>) Synthetic; (<b>b</b>) Simulated [<a href="#B24-sensors-22-05688" class="html-bibr">24</a>]; (<b>c</b>) Real [<a href="#B10-sensors-22-05688" class="html-bibr">10</a>].</p> "> Figure 2
<p>CNN training method.</p> "> Figure 3
<p>CNN architecture and its outputs.</p> "> Figure 4
<p>Multi-partite graph layout for multi-object tracking.</p> "> Figure 5
<p>CNN training evaluation.</p> "> Figure 6
<p>RSOnet on real FAI images.</p> "> Figure 7
<p>Illustration of simulated multi-site observation of RADARSAT constellation mission.</p> "> Figure 8
<p>Observer’s reference frame and definition of key astrometric parameters.</p> ">
Abstract
:1. Introduction
2. Relevant Works
2.1. Dual-Purpose Star Tracker
2.2. Image Processing
2.3. Space Domain Awareness and Applications
3. RSOnet: Star-Field Image Processing
3.1. RSOnet: CNN Architecture and Training
3.2. Tracking and Classification
4. Evaluation Metrics and Analysis
5. Discussion
Simulated Orbit Determination Scenario
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jah, M. Space Surveillance, Tracking, and Information Fusion for Space Domain Awareness. NATO STO-EN-SCI-292. 2016. Available online: https://www.sto.nato.int/publications/STO%20Educational%20Notes/STO-EN-SCI-292/EN-SCI-292-02.pdf (accessed on 10 March 2022).
- Oltrogge, D. The “We” Approach to Space Traffic Management. In Proceedings of the 15th International Conference on Space Operations, Marseille, France, 28 May–1 June 2018; pp. 1–21. [Google Scholar]
- NASA Orbital Debris Quaterly News 2021. Volume 26, Issue 2, pp. 9–12. Available online: https://orbitaldebris.jsc.nasa.gov/quarterly-news/pdfs/odqnv25i1.pdf (accessed on 18 March 2021).
- Foley, A. Nanosat Employment: A Theoretical CONOPS for Space Object Identification. Master’s Thesis, Naval Postgraduate School, Monterey, CA, USA, 2014. [Google Scholar]
- Delabie, T. Star Tracker Algorithms and a Low-Cost Attitude Determination and Control System for Space Missions. Ph.D. Thesis, Arenberg Doctoral School, Leuven, Belgium, 2016. [Google Scholar]
- Scott, R.; Thorsteinson, S. Key Findings from the NEOSSat Space-Based SSA Microsatellite Mission. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, HI, USA, 11–14 September 2018; Available online: www.amostech.com (accessed on 22 January 2022).
- Denver, T.; Benn, M.; Jørgensen, J.; Jørgensen, P.; Herceg, M.; Jack, E. Space Debris Detection and Tracking Using Star Trackers. Geophys. Res. Abstr. 2019, 21, 1. [Google Scholar]
- SpaceX Designing and Building Safe, Reliable and Demisable Satellites Extremely Low Orbit Insertion Operating below 600 km. 2022. Available online: https://www.spacex.com/updates/sustainability (accessed on 3 June 2022).
- Clemens, S.; Lee, R.; Harrison, P.; Soh, W. Feasibility of Using Commercial Star Trackers for On-Orbit Resident Space Object Detection. In Proceedings of the 18th Annual Advanced Maui Optical And Space Surveillance Technologies Conference, Maui, HI, USA, 11–14 September 2018. [Google Scholar]
- Cogger, L.; Howarth, A.; Yau, A.; White, A.; Enno, G.; Trondsen, T.; Asquin, D.; Gordon, B.; Marchand, P.; Ng, D.; et al. Fast Auroral Imager (FAI) for the e-POP Mission. Space Sci. Rev. 2015, 189, 15–25. [Google Scholar] [CrossRef]
- Clark, R.; Fu, Y.; Dave, S.; Lee, R. Simulation of RSO Images for Space Situation Awareness (SSA) Using Parallel Processing. Sensors 2021, 21, 7868. [Google Scholar] [CrossRef] [PubMed]
- Lang, D.; Hogg, D.; Mierle, K.; Blanton, M.; Roweis, S. Astrometry.net: Blind astrometric calibration of arbitrary astronomical images. arXiv 2010, arXiv:0910.2233. [Google Scholar] [CrossRef] [Green Version]
- Badura, G.; Valenta, C.; Gunter, B. Convolutional Neural Networks for Inference of Space Object Attitude Status. J. Astronaut. Sci. 2019, 69, 593–626. [Google Scholar] [CrossRef]
- Jin Choi, J.; Astronomy, T.; Astronomy, S.; Science, S. Short-arc orbit determination results and space debris test observation of the OWL-Net. Korea Astronomy and Space Science Institute. In Proceedings of the 17th Annual Advanced Maui Optical And Space Surveillance Technologies Conference, Maui, HI, USA, 19–22 September 2017. [Google Scholar]
- Zhang, Y.; Zhao, Y. Applications of Support Vector Machines in Astronomy. Astron. Data Anal. Softw. Syst. XXIII 2014, 485, 239–242. [Google Scholar]
- Delabie, T.; De Schutter, J.; Vandenbussche, B. An accurate and efficient Gaussian fit centroiding algorithm for star trackers. J. Astronaut. Sci. 2014, 61, 60–84. [Google Scholar] [CrossRef]
- Wan, X.; Wang, G.; Wei, X.; Li, J.; Zhang, G. Star centroiding based on fast gaussian fitting for star sensors. Sensors 2018, 18, 2836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbel, J.; Kacprzak, T.; Amara, A.; Refregier, A.; Lucchi, A. Fast point spread function modeling with deep learning. J. Cosmol. Astropart. Phys. 2018, 2018, 054. [Google Scholar] [CrossRef] [Green Version]
- Privett, G.; Appleby, G.; Sherwood, R. Image Stacking Techniques for GEO Satellites. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, HI, USA, 11–14 September 2014; p. e56. [Google Scholar]
- Wozniak, P.; Prasad, L.; Wohlberg, B. Moving point source detection and localization in wide-field images. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, HI, USA, 11–14 September 2018. [Google Scholar]
- Do, H.; Chin, T.; Moretti, N.; Jah, M.; Tetlow, M. ScienceDirect Robust foreground segmentation and image registration for optical detection of GEO objects. Adv. Space Res. 2019, 64, 733–746. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Wang, X.; Zeng, W.; Liu, W. FairMOT: On the Fairness of Detection and Re-identification in Multiple Object Tracking. Int. J. Comput. Vis. 2021, 129, 3069–3087. [Google Scholar] [CrossRef]
- Berclaz, J.; Fleuret, F.; Turetken, E.; Fua, P. Multiple Object Tracking Using K-Shortest Paths Optimization. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 1806–1819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, R.; Dave, S.; Wawrow, J.; Lee, R. Performance of Parameterization Algorithms for Resident Space Object (RSO) Attitude Estimates. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Wailea, HI, USA, 27–30 September 2020; pp. 1–14. [Google Scholar]
- Wilkins, M.; Pfeffer, A.; Ruttenberg, B.; Schumacher, P.; Jah, M. Implications of hierarchies for RSO recognition, identification, and characterization. In Proceedings of the AIAA/AAS Astrodynamics Specialist Conference 2014, San Diego, CA, USA, 4–7 August 2014. [Google Scholar]
- Rangesh, A.; Maheshwari, P.; Gebre, M.; Mhatre, S.; Ramezani, V.; Trivedi, M. TrackMPNN: A Message Passing Graph Neural Architecture for Multi-Object Tracking. arXiv 2021, arXiv:2101.04206. [Google Scholar]
- Schulter, S.; Vernaza, P.; Choi, W.; Chandraker, M. Deep Network Flow for Multi-Object Tracking: Supplemental Material. arXiv 2017, arXiv:1706.08482. [Google Scholar]
- Li, J. yinizhizhu/GNMOT: Graph Networks for Multiple Object Tracking. Wacv 2020, 719–728. Available online: https://github.com/yinizhizhu/GNMOT (accessed on 30 July 2021).
- Raab, H. Detecting and measuring faint point sources with a CCD. In Proceedings of the MACE2002 2002, Visnjan, CA, USA, 17–19 May 2002; pp. 1–6. Available online: http://labs.physics.dur.ac.uk/level3/AP/local/PointSources.pdf (accessed on 1 May 2022).
- Liu, D.; Chen, B.; Chin, T.; Rutten, M. Topological sweep for multi-target detection of geostationary space objects. IEEE Trans. Signal Process. 2020, 68, 5166–5177. [Google Scholar] [CrossRef]
- Furfaro, R.; Linares, R.; Reddy, V. Space Debris Identification and Characterization via Deep Meta-Learning. In Proceedings of the 1st International Orbital Debris Conference, Sugar Land, TX, USA, 9–12 December 2019; pp. 1–9. [Google Scholar]
- Mcquaid, I.; Merkle, L.; Borghetti, B.; Cobb, R.; Fletcher, J. Space Object Identification Using Deep Neural Networks. In Proceedings of the 19th Annual Advanced Maui Optical And Space Surveillance Technologies Conference, Maui, HI, USA, 11–14 September 2018; Available online: https://amostech.com/TechnicalPapers/2018/Astrodynamics/McQuaid.pdf (accessed on 12 June 2022).
Function | Synthetic | Simulated | Real |
---|---|---|---|
Object detection | |||
PSF mean (MSE) | 0.2 | ||
PSF scale (RMSE) | 0.15 | ||
Photon count (RMSE) | 0.1 |
Star | RSO | Noise | |
---|---|---|---|
Accuracy | |||
Precision | |||
Recall |
Cross-Track (m) | Range (m) | Displacement (m) | |
---|---|---|---|
Spacecraft | 955 | N/A | 2086 |
Ground | 683 | N/A | 1751 |
Combined | N/A | 1215 | 1512 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dave, S.; Clark, R.; Lee, R.S.K. RSOnet: An Image-Processing Framework for a Dual-Purpose Star Tracker as an Opportunistic Space Surveillance Sensor. Sensors 2022, 22, 5688. https://doi.org/10.3390/s22155688
Dave S, Clark R, Lee RSK. RSOnet: An Image-Processing Framework for a Dual-Purpose Star Tracker as an Opportunistic Space Surveillance Sensor. Sensors. 2022; 22(15):5688. https://doi.org/10.3390/s22155688
Chicago/Turabian StyleDave, Siddharth, Ryan Clark, and Regina S. K. Lee. 2022. "RSOnet: An Image-Processing Framework for a Dual-Purpose Star Tracker as an Opportunistic Space Surveillance Sensor" Sensors 22, no. 15: 5688. https://doi.org/10.3390/s22155688
APA StyleDave, S., Clark, R., & Lee, R. S. K. (2022). RSOnet: An Image-Processing Framework for a Dual-Purpose Star Tracker as an Opportunistic Space Surveillance Sensor. Sensors, 22(15), 5688. https://doi.org/10.3390/s22155688