Bed-Exit Behavior Recognition for Real-Time Images within Limited Range
<p>Object (human body) tracking range.</p> "> Figure 2
<p>System prototype: (<b>a</b>) system with mobile stand; (<b>b</b>) camera capturing a horizontal view; (<b>c</b>) camera capturing a vertical view.</p> "> Figure 3
<p>Images with four angles: (<b>a</b>) horizontal high; (<b>b</b>) horizontal low; (<b>c</b>) vertical high; (<b>d</b>) vertical low.</p> "> Figure 4
<p>Status classification queueing system.</p> "> Figure 5
<p>Object detection with bounding box in pink (<b>a</b>–<b>c</b>) and green (<b>d</b>).</p> "> Figure 6
<p>Real−time trace of XY coordinates for the bounding box from the horizontal low angle: numbers (1)~(9) stand for different statuses; letters (A)~(C) represent detection failure events.</p> "> Figure 7
<p>Real−time trace of XY coordinates for the bounding box from the vertical low angle: numbers (1)~(9) stand for different statuses; letters (A) and (E)~(G) represent detection failure events; letters (B)~(D) represent scene change events.</p> "> Figure 8
<p>Images from the diagonal high angle: (<b>a</b>) lay on the bed; (<b>b</b>) get up and turn around; (<b>c</b>) sit on the edge of bed; (<b>d</b>) exit the bed.</p> "> Figure 9
<p>Behavior index trace from the horizontal low angle: numbers (1)–(9) stand for different statuses; letters (A)–(C) represent detection failure events.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Images with a Narrow Field of View
2.2. Behavior Recognition for NFV Images
2.3. Bed-Exit Application
3. Results
3.1. Experiment
3.2. Complexity Analysis
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Aggarwal, J.K.; Ryoo, M.S. Human Activity Analysis: A Review. ACM Comput. Surv. 2011, 43, 1–43. [Google Scholar] [CrossRef]
- Suzuki, R.; Otake, S.; Izutsu, T.; Yoshida, M.; Iwaya, T. Monitoring Daily Living Activities of Elderly People in a Nursing Home Using an Infrared Motion-Detection System. Telemed. e-Health 2006, 12, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Lee, B.; Park, K.S. Detection of Abnormal Living Patterns for Elderly Living Alone Using Support Vector Data Description. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Huang, J.; Lan, Z.; Wang, Q. Bed Exiting Monitoring System with Fall Detection for the Elderly Living Alone. In Proceedings of the 2016 International Conference on Advanced Robotics and Mechatronics, Macau, China, 18–20 August 2016. [Google Scholar]
- Chesser, M.; Jayatilaka, A.; Visvanathan, R.; Fumeaux, C.; Sample, A.; Ranasinghe, D.C. Super Low Resolution RF Powered Accelerometers for Alerting on Hospitalized Patient Bed Exits. In Proceedings of the 2019 IEEE International Conference on Pervasive Computing and Communications, Kyoto, Japan, 11–15 March 2019. [Google Scholar]
- Mori, Y.; Kido, S. Monitoring System for Elderly People Using Passive RFID Tags. J. Robot. Mechatron. 2014, 26, 649–655. [Google Scholar] [CrossRef]
- Atallah, L.; Lo, B.; King, R.; Yang, G.Z. Sensor Placement for Activity Detection using Wearable Accelerometers. In Proceedings of the International Conference Body Sensor Networks, Biopolis, Singapore, 7–9 June 2010. [Google Scholar]
- Vilas-Boas, M.C.; Correia, M.V.; Cunha, S.R.; Silva, P. Monitoring of Bedridden Patients: Development of a Fall Detection Tool. In Proceedings of the IEEE 3rd Portuguese Meeting in Bioengineering, Braga, Portugal, 20–23 February 2013. [Google Scholar]
- Chen, T.; Hsiao, R.; Kao, C.; Liao, W.; Lin, D. Bed-exit Prediction based on Convolutional Neural Networks. In Proceedings of the 2017 International Conference on Applied System Innovation, Sapporo, Japan, 13–17 May 2017. [Google Scholar]
- Chen, T.; Hsiao, R.; Kao, C.; Lin, H.P.; Jeng, S.; Lin, D. Vision-Assisted Human Motion Analysis for Bed Exit Prediction Model Construction. In Proceedings of the 2017 International Conference on Information, Communication and Engineering, Fujian, China, 17–20 November 2017. [Google Scholar]
- Chiu, S.; Hsieh, J.; Hsu, C.; Chiu, C. A Convolutional Neural Networks Approach with Infrared Array Sensor for Bed-Exit Detection. In Proceedings of the 2018 International Conference on System Science and Engineering, New Taipei City, Taiwan, 28–30 June 2018. [Google Scholar]
- Inoue, M.; Taguchi, R.; Umezaki, T. Bed-Exit Prediction Applying Neural Network Combining Bed Position Detection and Patient Posture Estimation. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Berlin, Germany, 23–27 July 2019. [Google Scholar]
- Cao, Z.; Simon, T.; Wei, S.E.; Sheikh, Y. Realtime Multi-person 2D Pose Estimation using Part Affinity Fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. IEEE Trans. Pattern Anal. 2018, 15, 1125–1131. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. Scaled-YOLOv4: Scaling Cross Stage Partial Network. arXiv 2020, arXiv:2011.08036. [Google Scholar]
- Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple Online and Realtime Tracking. In Proceedings of the IEEE International Conference on Image Processing, Phoenix, AZ, USA, 25–28 September 2016. [Google Scholar]
- Wojke, N.; Bewley, A.; Paulus, D. Deep SORT: Simple Online and Realtime Tracking with a Deep Association Metric. arXiv 2017, arXiv:1703.07402. [Google Scholar]
- Kalman, R. A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, H.W. The Hungarian Method for the Assignment Problem. Nav. Res. Logist. Q. 1955, 2, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Tembine, H. Correlative Mean-field Filter for Sequential and Spatial Data Processing. In Proceedings of the IEEE International Conference on Smart Technologies, Ohrid, Macedonia, 6–8 July 2017. [Google Scholar]
- Gao, J.; Tembine, H. Distributed Mean-Field-Type Filters for Big Data Assimilation. In Proceedings of the IEEE the International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems, Sydney, Australia, 12–14 December 2016. [Google Scholar]
- Li, Y.; Mao, H.; Girshick, R.; He, K. Exploring Plain Vision Transformer Backbones for Object Detection. arXiv 2022, arXiv:2203.16527. [Google Scholar]
- Zhang, J.; Dong, B.; Zhang, H.; Ding, J.; Heide, F.; Yin, B.; Yang, X. Spiking Transformers for Event-Based Single Object Tracking. In Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 21–24 June 2022. [Google Scholar]
- Medsker, L.R.; Jain, L.C. Recurrent Neural Networks. Des. Appl. 2001, 5, 64–67. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Global Report on Falls Prevention in Older Age. Available online: https://apps.who.int/iris/handle/10665/43811 (accessed on 31 May 2022).
- Sherrington, C.; Fairhall, N.; Kwok, W.; Wallbank, G.; Tiedemann, A.; Michaleff, Z.A.; Ng, C.A.C.M.; Bauman, A. Evidence on Physical Activity and Falls Prevention for People Aged 65+ Years: Systematic Review to Inform the WHO Guidelines on Physical Activity and Sedentary Behavior. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.J.; Borrie, M.J.; Spears, G.F.; Jackson, S.L.; Brown, J.S.; Fitzgerald, J.L. Circumstances and Consequences of Falls Experienced by a Community Population 70 Years and Over During a Prospective Study. Age Ageing 1990, 19, 136–141. [Google Scholar] [CrossRef]
- Tinetti, M.E.; Speechley, M.; Ginter, S.F. Risk Factors for Falls among Elderly Persons Living in the Community. N. Engl. J. Med. 1988, 319, 1701–1707. [Google Scholar] [CrossRef]
- Peel, N.M.; Kassulke, D.J.; McClure, R.J. Population based Study of Hospitalised Fall related Injuries in Older People. Inj. Prev. 2002, 8, 280–283. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.J.; Shih, C.H.; Wei, T.S.; Liu, P.T.; Shih, C.Y. Local Object Tracking Using Infrared Array for Bed-exit Behavior Recognition. Sens. Mater. 2022, 34, 855–870. [Google Scholar] [CrossRef]
- He, K.; Sun, J. Convolutional Neural Networks at Constrained Time Cost. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Montella, C. The Kalman Filter and Related Algorithms: A Literature Review. ResearchGate. 2011. Available online: https://www.researchgate.net/publication/236897001_The_Kalman_Filter_and_Related_Algorithms_A_Literature_Review (accessed on 31 May 2022).
- Munkres, J. Algorithms for the Assignment and Transportation Problems. J. Soc. Ind. Appl. Math. 1957, 5, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Edmonds, J.; Karp, R.M. Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems. J. ACM 1972, 19, 248–264. [Google Scholar] [CrossRef]
- Tsironi, E.; Barros, P.; Weber, C.; Wermter, S. An Analysis of Convolutional Long Short-Term Memory Recurrent Neural Networks for Gesture Recognition. Neurocomputing 2017, 268, 76–86. [Google Scholar] [CrossRef]
Camera Angle | Object | TP | FP | A |
---|---|---|---|---|
Horizontal High | Head | 159 | 46 | 86% |
Trunk | 103 | 5 | 93% | |
Horizontal Low | Head | 149 | 48 | 85% |
Trunk | 112 | 25 | 85% | |
Vertical High | Head | 218 | 15 | 96% |
Trunk | 67 | 20 | 85% | |
Vertical Low | Head | 154 | 1 | 95% |
Trunk | x | x | x | |
Diagonal High | Head | 1817 | 2 | 99% |
Trunk | 763 | 39 | 96% |
Camera Angle | P | R | F1 | TP | FP | FN | mAP |
---|---|---|---|---|---|---|---|
Horizontal High | 84% | 85% | 85% | 262 | 51 | 45 | 90% |
Horizontal Low | 84% | 85% | 82% | 261 | 73 | 45 | 88% |
Vertical High | 89% | 92% | 90% | 285 | 37 | 24 | 90% |
Vertical Low | 99% | 90% | 95% | 154 | 1 | 17 | 49% |
Diagonal High | 98% | 98% | 98% | 2580 | 41 | 51 | 98% |
Camera Angle | On Bed | Off Bed | Return |
---|---|---|---|
Horizontal High | 100% (40/40) | 100% (20/20) | 100% (20/20) |
Horizontal Low | 100% (40/40) | 100% (20/20) | 100% (20/20) |
Vertical High | 100% (40/40) | 100% (20/20) | 95% (19/20) |
Vertical Low | 100% (40/40) | 100% (20/20) | 95% (19/20) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-J.; Wei, T.-S.; Liu, P.-T.; Chen, B.-H.; Shih, C.-H. Bed-Exit Behavior Recognition for Real-Time Images within Limited Range. Sensors 2022, 22, 5495. https://doi.org/10.3390/s22155495
Lin C-J, Wei T-S, Liu P-T, Chen B-H, Shih C-H. Bed-Exit Behavior Recognition for Real-Time Images within Limited Range. Sensors. 2022; 22(15):5495. https://doi.org/10.3390/s22155495
Chicago/Turabian StyleLin, Cheng-Jian, Ta-Sen Wei, Peng-Ta Liu, Bing-Hong Chen, and Chi-Huang Shih. 2022. "Bed-Exit Behavior Recognition for Real-Time Images within Limited Range" Sensors 22, no. 15: 5495. https://doi.org/10.3390/s22155495
APA StyleLin, C. -J., Wei, T. -S., Liu, P. -T., Chen, B. -H., & Shih, C. -H. (2022). Bed-Exit Behavior Recognition for Real-Time Images within Limited Range. Sensors, 22(15), 5495. https://doi.org/10.3390/s22155495