Identification of Bamboo Species Based on Extreme Gradient Boosting (XGBoost) Using Zhuhai-1 Orbita Hyperspectral Remote Sensing Imagery
<p>Location of the study area (<b>a</b>–<b>c</b>) and field survey route map (<b>c</b>).</p> "> Figure 2
<p>Map of field survey points and zoom-in maps.</p> "> Figure 3
<p>Bamboo species classification methodology and workflow.</p> "> Figure 4
<p>Average spectral signature curves of three bamboo species.</p> "> Figure 5
<p>(<b>a</b>) Confusion matrix and evaluation indicators of SAM; (<b>b</b>) classification map of SAM.</p> "> Figure 6
<p>The 15 most important variables selected by the random forest model.</p> "> Figure 7
<p>Spearman’s rank correlation coefficient for the 15 most important variables.</p> "> Figure 8
<p>Parameter search results of XGBoost models under three variable combinations.</p> "> Figure 9
<p>Confusion matrices and evaluation indicators: (<b>a</b>) SAM, (<b>b</b>) XGBoost (all variables), (<b>c</b>) XGBoost (important variables), and (<b>d</b>) XGBoost (important and uncorrelated variables).</p> "> Figure 10
<p>Classification maps: (<b>a</b>) SAM, (<b>b</b>) XGBoost (all variables), (<b>c</b>) XGBoost (important variables), and (<b>d</b>) XGBoost (important and uncorrelated variables).</p> "> Figure 11
<p>Comparison of evaluation indicators between SAM and three XGBoost classification results: (<b>a</b>) OA, kappa, and mean F1-score; (<b>b</b>) UA; (<b>c</b>) PA; and (<b>d</b>) F1-score of bamboo species.</p> "> Figure 12
<p>Comparison of differences in classification maps: (<b>a</b>) SAM vs. XGBoost (important and uncorrelated variables), (<b>b</b>) XGBoost (all variables) vs. XGBoost (important variables), (<b>c</b>) XGBoost (all variables) vs. XGBoost (important and uncorrelated variables), and (<b>d</b>) XGBoost (important variables) vs. XGBoost (important and uncorrelated variables).</p> "> Figure 13
<p>The distribution of values by bamboo species for the important and uncorrelated variables. Note: All feature variables are normalized to 0–1.</p> "> Figure A1
<p>Photos of some <span class="html-italic">Phyllostachys edulis</span> validation points from the field survey.</p> "> Figure A2
<p>Photos of some <span class="html-italic">Bambusa emeiensis</span> validation points from the field survey.</p> "> Figure A3
<p>Photos of some <span class="html-italic">Bambusa rigida</span> validation points from the field survey.</p> "> Figure A4
<p>The optimal XGBoost models were selected using the maximum accuracy obtained from fivefold cross-validation. (1) XGBoost (all variables), (2) XGBoost (important variables), and (3) XGBoost (important and uncorrelated variables). Note: The upper axis and the right axis represent the parameters <span class="html-italic">subsample</span> and <span class="html-italic">eta</span>, respectively.</p> "> Figure A5
<p>The optimal feature variables that were screened based on random forest and Spearman’s rank correlation analysis: (<b>a</b>) band 1, (<b>b</b>) band 4, (<b>c</b>) band 5, (<b>d</b>) band 17, (<b>e</b>) band 27, (<b>f</b>) elevation, and (<b>g</b>) mean. Note: All feature variables were normalized to 0–1.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
- (1)
- Orbita hyperspectral (OHS) imagery
- (2)
- Field data
- (3)
- Accuracy assessment data acquisition
2.3. Methods
2.3.1. Overview
- (1)
- Data preprocessing is an essential basic work for subsequent identification of bamboo species, so the OHS imagery was subjected to radiometric calibration, atmospheric correction, orthorectification, and topographic correction, and then the forestry survey data were used to clip the desired study area.
- (2)
- Feature variables extraction and screening are key for processing high-dimensional data, which can effectively reduce information redundancy and improve computing efficiency. For SAM, the preprocessed imagery with 32 bands was used and combined with the measured spectral curves from SVC HR-1024i to perform spectral angle matching on the spectral curves of the reference samples. For XGBoost, spectral features, vegetation indices, and texture features were extracted from the preprocessed OHS imagery; topographic features were extracted from AW3D30 DSM. To quantify the main factors that affected classification and to minimize the effect of multicollinearity, an XGBoost model based on random forest [76] and Spearman’s rank correlation analysis was constructed.
- (3)
- Built on the results of variable screening, the SAM and the XGBoost model were used to classify bamboo species to obtain spatial distribution maps of bamboo species. The accuracy assessment and comparative analysis were finally implemented using field observations.
2.3.2. Reference Samples Selection
2.3.3. Spectral Angle Mapper
2.3.4. Feature Variable Extraction and Screening
- (1)
- Spectral feature variables. The OHS imagery has rich spectral information. A total of 32 bands (B1 to B32) of the preprocessed OHS imagery were extracted as spectral feature variables.
- (2)
- Vegetation index feature variables. The vegetation index can be obtained by performing certain mathematical operations on multiple bands or band combinations of multispectral or hyperspectral remote sensing images. Four types of vegetation indices, namely, normalized difference vegetation index (NDVI), difference vegetation index (DVI), ratio vegetation index (RVI), and carotenoid index (CRI) [82,83,84,85], were chosen for feature analysis.
- (3)
- Topographic feature variables. The elevation of the study area (the data used are AW3D30 DSM) and its extracted slope, aspect, and slope position [86] were added to the feature variables.
- (4)
- Texture feature variables. The texture features of the GLCM [87] included mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation. Principal component analysis (PCA) was first performed on the preprocessed imagery, and then we selected the first principal component with a variance of 82.51% to calculate texture features. The processing window size of texture calculation was set to 3 × 3, and a total of 8 texture features were obtained.
2.3.5. Extreme Gradient Boosting
2.3.6. Accuracy Assessment
3. Results
3.1. Spectral Angle Mapper
3.2. Feature Variable Extraction and Screening
3.3. Extreme Gradient Boosting
3.4. Comparison of Classification Results
4. Discussion
4.1. Spectral Angle Mapper
4.2. Feature Variable Extraction and Screening
4.3. Extreme Gradient Boosting
4.4. Comparison of Classification Results
4.5. Limitations and Outlooks
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- FAO. Global Forest Resources Assessment 2020: Main Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020; pp. 39–40. [Google Scholar]
- Li, Y.; Feng, P. Bamboo resources in China based on the ninth national forest inventory data. World Bamboo Ratt. 2019, 17, 45–48. (In Chinese) [Google Scholar]
- Zhou, G.; Meng, C.; Jiang, P.; Xu, Q. Review of carbon fixation in bamboo forests in China. Bot. Rev. 2011, 77, 262–270. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, L.; Zhou, Y.; Ji, B.; Zhou, G.; Fang, H.; Yin, J.; Deng, X. Quantifying driving factors of vegetation carbon stocks of moso bamboo forests using machine learning algorithm combined with structural equation model. For. Ecol. Manag. 2018, 429, 406–413. [Google Scholar] [CrossRef]
- Li, Y.; Han, N.; Li, X.; Du, H.; Mao, F.; Cui, L.; Liu, T.; Xing, L. Spatiotemporal estimation of bamboo forest aboveground carbon storage based on Landsat data in Zhejiang, China. Remote Sens. 2018, 10, 898. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Chen, X.; Zhou, G.; Jiang, H.; Peng, C. Observed high and persistent carbon uptake by moso bamboo forests and its response to environmental drivers. Agric. For. Meteorol. 2017, 247, 467–475. [Google Scholar] [CrossRef]
- Jiang, M.; Cai, X.; Liao, J.; Yang, Y.; Chen, Q.; Gao, S.; Yu, X.; Luo, Z.; Lei, T.; Lv, B.; et al. Different strategies for lead detoxification in dwarf bamboo tissues. Ecotoxicol. Environ. Saf. 2020, 193, 110329. [Google Scholar] [CrossRef]
- Cai, X.; Jiang, M.; Liao, J.; Yang, Y.; Li, N.; Cheng, Q.; Li, X.; Song, H.; Luo, Z.; Liu, S. Biomass allocation strategies and Pb-enrichment characteristics of six dwarf bamboos under soil Pb stress. Ecotoxicol. Environ. Saf. 2021, 207, 111500. [Google Scholar] [CrossRef]
- Zhou, B.; Fu, M.; Xie, J.; Yang, X.; Li, Z. Ecological functions of bamboo forest: Research and application. J. For. Res. 2005, 16, 143–147. [Google Scholar] [CrossRef]
- Li, P.; Zhou, G.; Du, H.; Lu, D.; Mo, L.; Xu, X.; Shi, Y.; Zhou, Y. Current and potential carbon stocks in moso bamboo forests in China. J. Environ. Manag. 2015, 156, 89–96. [Google Scholar] [CrossRef]
- Yen, T.; Lee, J. Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model. For. Ecol. Manag. 2011, 261, 995–1002. [Google Scholar] [CrossRef]
- Song, X.; Zhou, G.; Jiang, H.; Yu, S.; Fu, J.; Li, W.; Wang, W.; Ma, Z.; Peng, C. Carbon sequestration by Chinese bamboo forests and their ecological benefits: Assessment of potential, problems, and future challenges. Environ. Rev. 2011, 19, 418–428. [Google Scholar] [CrossRef] [Green Version]
- Nath, A.J.; Lal, R.; Das, A.K. Managing woody bamboos for carbon farming and carbon trading. Glob. Ecol. Conserv. 2015, 3, 654–663. [Google Scholar] [CrossRef] [Green Version]
- Yuen, J.Q.; Fung, T.; Ziegler, A.D. Carbon stocks in bamboo ecosystems worldwide: Estimates and uncertainties. For. Ecol. Manag. 2017, 393, 113–138. [Google Scholar] [CrossRef]
- Yi, T. Iconographia Bambusoidearum Sinicarum; Science Press: Beijing, China, 2008; p. 751. (In Chinese) [Google Scholar]
- Fang, W. Chinese Economic Bamboo; Science Press: Beijing, China, 2015; p. 402. (In Chinese) [Google Scholar]
- Sedliak, M.; Sačkov, I.; Kulla, L. Classification of tree species composition using a combination of multispectral imagery and airborne laser scanning data. Cent. Eur. For. J. 2017, 63, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Fassnacht, F.E.; Joshi, P.K.; Koch, B. A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 49–63. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Latifi, H.; Sterenczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Qin, Y.; Dong, J.; Geissler, G.; Zhang, G.; Cejda, N.; Alikhani, B.; Doughty, R.B. Mapping the dynamics of eastern redcedar encroachment into grasslands during 1984–2010 through PALSAR and time series Landsat images. Remote Sens. Environ. 2017, 190, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; Coops, N.C.; Roy, D.P.; White, J.C.; Hermosilla, T. Land cover 2.0. Int. J. Remote Sens. 2018, 39, 4254–4284. [Google Scholar] [CrossRef] [Green Version]
- Wilson, E.H.; Sader, S.A. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- Dong, J.; Kuang, W.; Liu, J. Continuous land cover change monitoring in the remote sensing big data era. Sci. China Earth Sci. 2017, 60, 2223–2224. [Google Scholar] [CrossRef]
- Holmgren, J.; Persson, Å.; Söderman, U. Species identification of individual trees by combining high resolution LiDAR data with multi-spectral images. Int. J. Remote Sens. 2008, 29, 1537–1552. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Gianelle, D. Tree species classification in the southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sens. Environ. 2012, 123, 258–270. [Google Scholar] [CrossRef]
- Åkerblom, M.; Raumonen, P.; Mäkipää, R.; Kaasalainen, M. Automatic tree species recognition with quantitative structure models. Remote Sens. Environ. 2017, 191, 1–12. [Google Scholar] [CrossRef]
- Krahwinkler, P.; Rossmann, J. Tree species classification and input data evaluation. Eur. J. Remote Sens. 2013, 46, 535–549. [Google Scholar] [CrossRef] [Green Version]
- Sheeren, D.; Fauvel, M.; Josipović, V.; Lopes, M.; Planque, C.; Willm, J.; Dejoux, J.-F. Tree species classification in temperate forests using Formosat-2 satellite image time series. Remote Sens. 2016, 8, 734. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.L.; Roberts, D.A.; Clark, D.B. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens. Environ. 2005, 96, 375–398. [Google Scholar] [CrossRef]
- Grabska, E.; Hostert, P.; Pflugmacher, D.; Ostapowicz, K. Forest stand species mapping using the Sentinel-2 time series. Remote Sens. 2019, 11, 1197. [Google Scholar] [CrossRef] [Green Version]
- Dudley, K.L.; Dennison, P.E.; Roth, K.L.; Roberts, D.A.; Coates, A.R. A multi-temporal spectral library approach for mapping vegetation species across spatial and temporal phenological gradients. Remote Sens. Environ. 2015, 167, 121–134. [Google Scholar] [CrossRef]
- Ballanti, L.; Blesius, L.; Hines, E.; Kruse, B. Tree species classification using hyperspectral imagery: A comparison of two classifiers. Remote Sens. 2016, 8, 445. [Google Scholar] [CrossRef] [Green Version]
- Qian, S.E. Hyperspectral satellites, evolution, and development history. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7032–7056. [Google Scholar] [CrossRef]
- Sun, W.; Yang, G.; Chen, C.; Chang, M.; Huang, K.; Meng, X.; Liu, L. Development status and literature analysis of China’s earth observation remote sensing satellites. J. Remote Sens. 2020, 24, 479–510. (In Chinese) [Google Scholar]
- Meng, X.; Bao, Y.; Ye, Q.; Liu, H.; Zhang, X.; Tang, H.; Zhang, X. Soil organic matter prediction model with satellite hyperspectral image based on optimized denoising method. Remote Sens. 2021, 13, 2273. [Google Scholar] [CrossRef]
- Dong, X.; Gan, F.; Li, N.; Yan, B.; Zhang, L.; Zhao, J.; Yu, J.; Liu, R.; Ma, Y. Fine mineral identification of GF-5 hyperspectral image. J. Remote Sens. 2020, 24, 454–464. (In Chinese) [Google Scholar]
- Xiong, W. Greenhouse gases monitoring instrument(GMI) on GF-5 satellite (invited). Infrared Laser Eng. 2019, 48, 24–30. (In Chinese) [Google Scholar]
- Ye, X.; Ren, H.; Liu, R.; Qin, Q.; Liu, Y.; Dong, J. Land surface temperature estimate from Chinese Gaofen-5 satellite data using split-window algorithm. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5877–5888. [Google Scholar] [CrossRef]
- Li, N.; Dong, X.; Gan, F.; Yan, B. Application evaluation of ZY-1-02D satellite hyperspectral data in geological survey. Spacecr. Eng. 2020, 29, 186–191. (In Chinese) [Google Scholar]
- Peng, Y.; Zhao, L.; Hu, Y.; Wang, G.; Wang, L.; Liu, Z. Prediction of soil nutrient contents using visible and near-infrared reflectance spectroscopy. ISPRS Int. J. Geo-inf. 2019, 8, 437. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Gao, J.; Zha, Y. Hyperspectral sensing of heavy metals in soil and vegetation: Feasibility and challenges. ISPRS J. Photogramm. Remote Sens. 2018, 136, 73–84. [Google Scholar] [CrossRef]
- Pan, M.; Yang, K. Study on spectral unmixing model of chlorophyll-a concentration extraction based on HJ-1 HSI hyperspectral data. Sci. Technol. Eng. 2017, 17, 71–76. (In Chinese) [Google Scholar]
- Li, J.; Guo, Q.; Ren, L. Study on monitoring freezing injury to winter wheat in overwinter period based on hyper-spectrometer and HJ1A-HSI image. J. Nat. Disasters 2017, 26, 53–63. (In Chinese) [Google Scholar]
- Sun, H.; Zhao, Z.; Zhao, J.; Chen, W. Inversion of topsoil organic matter content by hyperspectral remote sensing of Zhuhai-1. Remote Sens. Inf. 2020, 35, 40–46. (In Chinese) [Google Scholar]
- Kahaer, Y.; Tashpolat, N.; Shi, Q.; Liu, S. Possibility of Zhuhai-1 hyperspectral imagery for monitoring salinized soil moisture content using fractional order differentially optimized spectral indices. Water 2020, 12, 3360. [Google Scholar] [CrossRef]
- Xi, Y.; Ren, C.; Wang, Z.; Wei, S.; Bai, J.; Zhang, B.; Xiang, H.; Chen, L. Mapping tree species composition using OHS-1 hyperspectral data and deep learning algorithms in Changbai Mountains, northeast China. Forests 2019, 10, 818. [Google Scholar] [CrossRef] [Green Version]
- Mo, Y.; Zhong, R.; Cao, S. Orbita hyperspectral satellite image for land cover classification using random forest classifier. J. Appl. Remote Sens. 2021, 15, 014519. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Q.; Fan, H.; Yao, C.; Sun, X.; Chan, J.; Deng, J. Evaluating satellite hyperspectral (Orbita) and multispectral (Landsat 8 and Sentinel-2) imagery for identifying cotton acreage. Int. J. Remote Sens. 2021, 42, 4042–4063. [Google Scholar] [CrossRef]
- Yin, J.; Zhou, L.; Li, L.; Zhang, Y.; Huang, W.; Zhang, H.; Wang, Y.; Zheng, S.; Fan, H.; Ji, C.; et al. A comparative study on wheat identification and growth monitoring based on multi-source remote sensing data. Remote Sens. Technol. Appl. 2021, 36, 332–341. (In Chinese) [Google Scholar]
- Du, P.; Xia, J.; Xue, Z.; Tan, K.; Su, H.; Bao, R. Review of hyperspectral remote sensing image classification. J. Remote Sens. 2016, 20, 236–256. (In Chinese) [Google Scholar]
- Zhang, B. Advancement of hyperspectral image processing and information extraction. J. Remote Sens. 2016, 20, 1062–1090. (In Chinese) [Google Scholar] [CrossRef]
- McMichael, C.H.; Bush, M.B.; Silman, M.R.; Piperno, D.R.; Raczka, M.; Lobato, L.C.; Zimmerman, M.; Hagen, S.; Palace, M. Historical fire and bamboo dynamics in western Amazonia. J. Biogeogr. 2013, 40, 299–309. [Google Scholar] [CrossRef]
- Li, M.; Li, C.; Jiang, H.; Fang, C.; Yang, J.; Zhu, Z.; Shi, L.; Liu, S.; Gong, P. Tracking bamboo dynamics in Zhejiang, China, using time-series of Landsat data from 1990 to 2014. Int. J. Remote Sens. 2016, 37, 1714–1729. [Google Scholar] [CrossRef]
- Qi, S.; Song, B.; Liu, C.; Gong, P.; Luo, J.; Zhang, M.; Xiong, T. Bamboo forest mapping in China using the dense Landsat 8 image archive and Google Earth Engine. Remote Sens. 2022, 14, 762. [Google Scholar] [CrossRef]
- Ghosh, A.; Joshi, P.K. A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 298–311. [Google Scholar] [CrossRef]
- Coltri, P.P.; Zullo, J.; Goncalves, R.R.D.; Romani, L.A.S.; Pinto, H.S. Coffee crop’s biomass and carbon stock estimation with usage of high resolution satellites images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1786–1795. [Google Scholar] [CrossRef]
- Ma, Y.; Fang, S.; Peng, Y.; Gong, Y.; Wang, D. Remote estimation of biomass in winter oilseed rape (Brassica napus L.) using canopy hyperspectral data at different growth stages. Appl. Sci. 2019, 9, 545. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Zhang, G.; Duan, J. Relationship between topography and the distribution of understory vegetation in a Pinus massoniana forest in southern China. Int. Soil Water Conserv. Res. 2015, 3, 291–304. [Google Scholar] [CrossRef] [Green Version]
- Gracia, M.; Montane, F.; Pique, J.; Retana, J. Overstory structure and topographic gradients determining diversity and abundance of understory shrub species in temperate forests in central Pyrenees (NE Spain). For. Ecol. Manag. 2007, 242, 391–397. [Google Scholar] [CrossRef]
- Florinsky, I.V.; Kuryakova, G.A. Influence of topography on some vegetation cover properties. Catena 1996, 27, 123–141. [Google Scholar] [CrossRef]
- Brown, D.G. Predicting vegetation types at treeline using topography and biophysical disturbance variables. J. Veg. Sci. 1994, 5, 641–656. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Leng, W.; Liu, K.; Liu, L.; Zhu, Y. Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models. Remote Sens. 2018, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- Yumin, T.; Wei, X.; Bo, X.; Linjie, B. Multi-feature classification approach for high spatial resolution hyperspectral images. J. Indian Soc. Remote Sens. 2018, 46, 9–17. [Google Scholar] [CrossRef]
- Thenkabail, P.S. Remote Sensing Handbook; Volume 1: Remotely Sensed Data Characterization, Classification, and Accuracies; Taylor & Francis: Boca Raton, FL, USA, 2016; p. 663. [Google Scholar]
- Chen, Y.; Ding, L.; Ge, H.; Zhang, M.; Hu, Y. Hyperspectral Bambusoideae discrimination based on Mann-Whitney non-parametric test and SVM. Spectrosc. Spectr. Anal. 2011, 31, 3010–3013. [Google Scholar] [CrossRef]
- Chu, B.; Zhao, Y.; He, Y. Discriminant analysis of bamboo leaf types with NIR coupled with characteristic wavelengths. Spectrosc. Spectr. Anal. 2017, 37, 1718–1722. [Google Scholar] [CrossRef]
- Tao, J.; Liu, L.; Pang, Y.; Li, D.; Feng, Y.; Wang, X.; Ding, Y.; Peng, Q.; Xiao, W. Automatic identification of tree species based on airborne LiDAR and hyperspectral data. J. Zhejiang Agric. For. Univ. 2018, 35, 314–323. (In Chinese) [Google Scholar]
- Zhang, Y.; Lin, H.; Zang, Z.; Yan, E.; Dong, Q. Comparison among methods that extract forest information from hyper-spectral remote sensing image. J. Central South Univ. For. Technol. 2013, 33, 75–79. (In Chinese) [Google Scholar] [CrossRef]
- Liu, J.; Gu, L.; Yu, K.; Chen, Z. Response and recognition of the spectral information of bamboo Phyllostachy sedulis based on HJ-1HIS data. Acta Agric. Univ. Jiangxiensis 2016, 38, 1100–1109. (In Chinese) [Google Scholar]
- Cai, L.; Wu, D.; Fang, L.; Zheng, X. Tree species identification using XGBoost based on GF-2 images. For. Resour. Manag. 2019, 44–51. (In Chinese) [Google Scholar] [CrossRef]
- Lin, Y.; Guo, H.; Hu, J. An SVM-based approach for stock market trend prediction. In Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN), Dallas, TX, USA, 4–9 August 2013; pp. 1–7. [Google Scholar]
- Mathur, A.; Foody, G.M. Multiclass and binary SVM classification: Implications for training and classification users. IEEE Geosci. Remote Sens. Lett. 2008, 5, 241–245. [Google Scholar] [CrossRef]
- Forghani, Y.; Yazdi, H.S. Robust support vector machine-trained fuzzy system. Neural Netw. 2014, 50, 154–165. [Google Scholar] [CrossRef]
- Fan, J.; Wang, X.; Wu, L.; Zhou, H.; Zhang, F.; Yu, X.; Lu, X.; Xiang, Y. Comparison of support vector machine and extreme gradient boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China. Energy Convers. Manag. 2018, 164, 102–111. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Genuer, R.; Poggi, J.M.; Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 2010, 31, 2225–2236. [Google Scholar] [CrossRef] [Green Version]
- Cooley, T.; Anderson, G.P.; Felde, G.W.; Hoke, M.L.; Ratkowski, A.J.; Chetwynd, J.H.; Gardner, J.A.; Adler-Golden, S.M.; Matthew, M.W.; Berk, A.; et al. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; pp. 1414–1418. [Google Scholar]
- Leprince, S.; Barbot, S.; Ayoub, F.; Avouac, J.P. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1529–1558. [Google Scholar] [CrossRef] [Green Version]
- Soenen, S.A.; Peddle, D.R.; Coburn, C.A. SCS + C: A modified sun-canopy-sensor topographic correction in forested terrain. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2148–2159. [Google Scholar] [CrossRef]
- Ye, S.; Pontius, R.G., Jr.; Rakshit, R. A review of accuracy assessment for object-based image analysis: From per-pixel to per-polygon approaches. ISPRS J. Photogramm. Remote Sens. 2018, 141, 137–147. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Wong, C.Y.S.; D’Odorico, P.; Bhathena, Y.; Arain, M.A.; Ensminger, I. Carotenoid based vegetation indices for accurate monitoring of the phenology of photosynthesis at the leaf-scale in deciduous and evergreen trees. Remote Sens. Environ. 2019, 233, 111407. [Google Scholar] [CrossRef]
- Alonzo, M.; Bookhagen, B.; Roberts, D.A. Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sens. Environ. 2014, 148, 70–83. [Google Scholar] [CrossRef]
- Gnyp, M.L.; Miao, Y.; Yuan, F.; Ustin, S.L.; Yu, K.; Yao, Y.; Huang, S.; Bareth, G. Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages. Field Crops Res. 2014, 155, 42–55. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Li, C.; Li, Z.; Wang, Y.; Feng, H.; Xu, B. Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sens. 2017, 9, 708. [Google Scholar] [CrossRef] [Green Version]
- Shoot, C.; Andersen, H.-E.; Moskal, L.M.; Babcock, C.; Cook, B.D.; Morton, D.C. Classifying forest type in the national forest inventory context with airborne hyperspectral and lidar data. Remote Sens. 2021, 13, 1863. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Millard, K.; Richardson, M. On the importance of training data sample selection in random forest image classification: A case study in peatland ecosystem mapping. Remote Sens. 2015, 7, 8489–8515. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY, USA, 2013; p. 597. [Google Scholar]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Dabija, A.; Kluczek, M.; Zagajewski, B.; Raczko, E.; Kycko, M.; Al-Sulttani, A.H.; Tardà, A.; Pineda, L.; Corbera, J. Comparison of support vector machines and random forests for corine land cover mapping. Remote Sens. 2021, 13, 777. [Google Scholar] [CrossRef]
- Hand, D.; Christen, P. A note on using the F-measure for evaluating record linkage algorithms. Stat. Comput. 2018, 28, 539–547. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, N.; Lu, D.; Chen, Y. Mapping moso bamboo forest and its on-year and off-year distribution in a subtropical region using time-series Sentinel-2 and Landsat 8 data. Remote Sens. Environ. 2019, 231, 111265. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, D.; Jayaraman, D.; Belay, D.; Sebrala, H.; Ngugi, J.; Maina, E.; Akombo, R.; Otuoma, J.; Mutyaba, J. Bamboo mapping of Ethiopia, Kenya and Uganda for the year 2016 using multi-temporal Landsat imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 116–125. [Google Scholar] [CrossRef]
- Du, H.; Mao, F.; Li, X.; Zhou, G.; Xu, X.; Han, N.; Sun, S.; Gao, G.; Cui, L.; Li, Y.; et al. Mapping global bamboo forest distribution using multisource remote sensing data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1458–1471. [Google Scholar] [CrossRef]
- Girouard, G.; Bannari, A.; El Harti, A.; Desrochers, A. Validated spectral angle mapper algorithm for geological mapping: Comparative study between QuickBird and Landsat-TM. In Proceedings of the XXth ISPRS Congress, Geo-Imagery Bridging Continents, Istanbul, Turkey, 12–23 July 2004; p. 23. [Google Scholar]
- Elatawneh, A.; Kalaitzidis, C.; Petropoulos, G.P.; Schneider, T. Evaluation of diverse classification approaches for land use/cover mapping in a Mediterranean region utilizing Hyperion data. Int. J. Digit. Earth 2014, 7, 194–216. [Google Scholar] [CrossRef]
- DeLancey, E.R.; Kariyeva, J.; Bried, J.T.; Hird, J.N. Large-scale probabilistic identification of boreal peatlands using Google Earth Engine, open-access satellite data, and machine learning. PLoS ONE 2019, 14, e0218165. [Google Scholar] [CrossRef] [Green Version]
- Samat, A.; Li, E.; Wang, W.; Liu, S.; Lin, C.; Abuduwaili, J. Meta-XGBoost for hyperspectral image classification using extended MSER-guided morphological profiles. Remote Sens. 2020, 12, 1973. [Google Scholar] [CrossRef]
- Linderman, M.; Liu, J.; Qi, J.; An, L.; Ouyang, Z.; Yang, J.; Tan, Y. Using artificial neural networks to map the spatial distribution of understorey bamboo from remote sensing data. Int. J. Remote Sens. 2004, 25, 1685–1700. [Google Scholar] [CrossRef]
- Jafarzadeh, H.; Mahdianpari, M.; Gill, E.; Mohammadimanesh, F.; Homayouni, S. Bagging and boosting ensemble classifiers for classification of multispectral, hyperspectral and PolSAR data: A comparative evaluation. Remote Sens. 2021, 13, 4405. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Huang, H.; Shi, G.; He, H.; Duan, Y.; Luo, F. Dimensionality reduction of hyperspectral imagery based on spatial-spectral manifold learning. IEEE Trans. Cybern. 2020, 50, 2604–2616. [Google Scholar] [CrossRef] [Green Version]
- Sara, D.; Mandava, A.K.; Kumar, A.; Duela, S.; Jude, A. Hyperspectral and multispectral image fusion techniques for high resolution applications: A review. Earth Sci. Inform. 2021, 14, 1685–1705. [Google Scholar] [CrossRef]
- Dashti, H.; Poley, A.; Glenn, N.F.; Ilangakoon, N.; Spaete, L.; Roberts, D.; Enterkine, J.; Flores, A.N.; Ustin, S.L.; Mitchell, J.J. Regional scale dryland vegetation classification with an integrated lidar-hyperspectral approach. Remote Sens. 2019, 11, 2141. [Google Scholar] [CrossRef] [Green Version]
- Pimple, U.; Sitthi, A.; Simonetti, D.; Pungkul, S.; Leadprathom, K.; Chidthaisong, A. Topographic correction of Landsat TM-5 and Landsat OLI-8 imagery to improve the performance of forest classification in the mountainous terrain of Northeast Thailand. Sustainability 2017, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Gudex-Cross, D.; Pontius, J.; Adams, A. Enhanced forest cover mapping using spectral unmixing and object-based classification of multi-temporal Landsat imagery. Remote Sens. Environ. 2017, 196, 193–204. [Google Scholar] [CrossRef]
- Stoffels, J.; Mader, S.; Hill, J.; Werner, W.; Ontrup, G. Satellite-based stand-wise forest cover type mapping using a spatially adaptive classification approach. Eur. J. For. Res. 2012, 131, 1071–1089. [Google Scholar] [CrossRef]
- Leckie, D.G.; Tinis, S.; Nelson, T.; Burnett, C.; Gougeon, F.A.; Cloney, E.; Paradine, D. Issues in species classification of trees in old growth conifer stands. Can. J. Remote Sens. 2005, 31, 175–190. [Google Scholar] [CrossRef]
- Abdollahnejad, A.; Panagiotidis, D.; Joybari, S.S.; Surovy, P. Prediction of dominant forest tree species using QuickBird and environmental data. Forests 2017, 8, 42. [Google Scholar] [CrossRef]
Data Type | Acquisition Date | Spatial Resolution | Data Source |
---|---|---|---|
OHS imagery | 27 July 2020 | 10 m | https://www.obtdata.com/ (accessed on 20 May 2021) |
Sentinel-2A | 15 August 2019 | 10 m | https://earthexplorer.usgs.gov/ (accessed on 20 May 2021) |
SRTM DEM | 11 February 2000 | 30 m | https://earthexplorer.usgs.gov/ (accessed on 21 May 2021) |
AW3D30 DSM | May 2016 | 30 m | https://www.eorc.jaxa.jp/ (accessed on 21 May 2021) |
Forestry survey data | 15 October 2012 | Vector data | Sichuan Academy of Forestry |
Variable Combination | Nrounds | Max_Depth | Eta | Subsample |
---|---|---|---|---|
All variables | 400 | 5 | 0.3 | 1 |
Important variables | 400 | 6 | 0.1 | 1 |
Important and uncorrelated variables | 200 | 6 | 0.3 | 0.5 |
Phyllostachys edulis Reference Spectrum | Phyllostachys edulis Sample Score | Bambusa emeiensis Reference Spectrum | Bambusa emeiensis Sample Score | Bambusa rigida Reference Spectrum | Bambusa rigida Sample Score |
---|---|---|---|---|---|
Phyllostachys edulis01 | 0.899 | Bambusa emeiensis04 | 0.924 | Bambusa emeiensis04 | 0.932 |
Bambusa emeiensis04 | 0.882 | Phyllostachys edulis01 | 0.904 | Bambusa rigida05 | 0.909 |
Phyllostachys edulis02 | 0.836 | Bambusa rigida05 | 0.882 | Phyllostachys edulis04 | 0.908 |
Bambusa rigida01 | 0.834 | Phyllostachys edulis04 | 0.881 | Phyllostachys edulis02 | 0.905 |
Bambusa rigida05 | 0.831 | Phyllostachys edulis02 | 0.880 | Bambusa rigida04 | 0.903 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, G.; Ni, Z.; Zhao, Y.; Luan, J. Identification of Bamboo Species Based on Extreme Gradient Boosting (XGBoost) Using Zhuhai-1 Orbita Hyperspectral Remote Sensing Imagery. Sensors 2022, 22, 5434. https://doi.org/10.3390/s22145434
Zhou G, Ni Z, Zhao Y, Luan J. Identification of Bamboo Species Based on Extreme Gradient Boosting (XGBoost) Using Zhuhai-1 Orbita Hyperspectral Remote Sensing Imagery. Sensors. 2022; 22(14):5434. https://doi.org/10.3390/s22145434
Chicago/Turabian StyleZhou, Guoli, Zhongyun Ni, Yinbing Zhao, and Junwei Luan. 2022. "Identification of Bamboo Species Based on Extreme Gradient Boosting (XGBoost) Using Zhuhai-1 Orbita Hyperspectral Remote Sensing Imagery" Sensors 22, no. 14: 5434. https://doi.org/10.3390/s22145434
APA StyleZhou, G., Ni, Z., Zhao, Y., & Luan, J. (2022). Identification of Bamboo Species Based on Extreme Gradient Boosting (XGBoost) Using Zhuhai-1 Orbita Hyperspectral Remote Sensing Imagery. Sensors, 22(14), 5434. https://doi.org/10.3390/s22145434