Sensors Special Issue: “Vibration Energy Harvesting for Wireless Sensors”
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mech, R.; Wiewiórski, P.; Wachtarczyk, K. Use of Magnetomechanical Effect for Energy Harvesting and Data Transfer. Sensors 2022, 22, 3304. [Google Scholar] [CrossRef] [PubMed]
- Mech, R.; Wiewiórski, P.; Wachtarczyk, K. Rapid Demagnetization of New Hybrid Core for Energy Harvesting. Sensors 2022, 22, 2102. [Google Scholar] [CrossRef] [PubMed]
- Hadas, Z.; Rubes, O.; Ksica, F.; Chalupa, J. Kinetic Electromagnetic Energy Harvester for Railway Applications—Development and Test with Wireless Sensor. Sensors 2022, 22, 905. [Google Scholar] [CrossRef] [PubMed]
- Litak, G.; Margielewicz, J.; Gąska, D.; Rysak, A.; Trigona, C. On Theoretical and Numerical Aspects of Bifurcations and Hysteresis Effects in Kinetic Energy Harvesters. Sensors 2022, 22, 381. [Google Scholar] [CrossRef]
- Koszewnik, A.; Lesniewski, K.; Pakrashi, V. Numerical Analysis and Experimental Verification of Damage Identification Metrics for Smart Beam with MFC Elements to Support Structural Health Monitoring. Sensors 2021, 21, 6796. [Google Scholar] [CrossRef]
- Machu, Z.; Rubes, O.; Sevecek, O.; Hadas, Z. Experimentally Verified Analytical Models of Piezoelectric Cantilevers in Different Design Configurations. Sensors 2021, 21, 6759. [Google Scholar] [CrossRef] [PubMed]
- Kunz, J.; Fialka, J.; Pikula, S.; Benes, P.; Krejci, J.; Klusacek, S.; Havranek, Z. A New Method to Perform Direct Efficiency Measurement and Power Flow Analysis in Vibration Energy Harvesters. Sensors 2021, 21, 2388. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Kim, P. Load Resistance Optimization of Bi-Stable Electromagnetic Energy Harvester Based on Harmonic Balance. Sensors 2021, 21, 1505. [Google Scholar] [CrossRef] [PubMed]
- Okosun, F.; Celikin, M.; Pakrashi, V. A numerical model for experimental designs of vibration-based leak detection and monitoring of water pipes using piezoelectric patches. Sensors 2020, 20, 6708. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.D.; Wu, Y.H.; Su, P.W. Dynamic modeling and experimental validation of an impact-driven piezoelectric energy harvester in magnetic field. Sensors 2020, 20, 6170. [Google Scholar] [CrossRef] [PubMed]
- Thainiramit, P.; Yingyong, P.; Isarakorn, D. Impact-driven energy harvesting: Piezoelectric versus triboelectric energy harvesters. Sensors 2020, 20, 5828. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.N.; Bader, S.; Oelmann, B. Performance of an electromagnetic energy harvester with linear and nonlinear springs under real vibrations. Sensors 2020, 20, 5456. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadas, Z.; Zelenika, S.; Pakrashi, V. Sensors Special Issue: “Vibration Energy Harvesting for Wireless Sensors”. Sensors 2022, 22, 4578. https://doi.org/10.3390/s22124578
Hadas Z, Zelenika S, Pakrashi V. Sensors Special Issue: “Vibration Energy Harvesting for Wireless Sensors”. Sensors. 2022; 22(12):4578. https://doi.org/10.3390/s22124578
Chicago/Turabian StyleHadas, Zdenek, Saša Zelenika, and Vikram Pakrashi. 2022. "Sensors Special Issue: “Vibration Energy Harvesting for Wireless Sensors”" Sensors 22, no. 12: 4578. https://doi.org/10.3390/s22124578
APA StyleHadas, Z., Zelenika, S., & Pakrashi, V. (2022). Sensors Special Issue: “Vibration Energy Harvesting for Wireless Sensors”. Sensors, 22(12), 4578. https://doi.org/10.3390/s22124578