A Review of Image Processing Techniques for Deepfakes
<p>Research article search and selection methodology.</p> "> Figure 2
<p>Flow chart of paper selection methodology.</p> "> Figure 3
<p>Examples of original and deepfake videos.</p> "> Figure 4
<p>Deepfake generation process using encoder–decoder pair [<a href="#B40-sensors-22-04556" class="html-bibr">40</a>].</p> "> Figure 5
<p>Architecture of DeepFaceLab from [<a href="#B41-sensors-22-04556" class="html-bibr">41</a>].</p> "> Figure 6
<p>Training and testing phases of FC-GAN [<a href="#B46-sensors-22-04556" class="html-bibr">46</a>].</p> "> Figure 7
<p>Types of deepfake videos and detection process.</p> "> Figure 8
<p>Deepfake detection using CNN and LSTM [<a href="#B75-sensors-22-04556" class="html-bibr">75</a>].</p> "> Figure 9
<p>Deepfake and original image: Original image (<b>left</b>), deepfake (<b>right</b>) [<a href="#B92-sensors-22-04556" class="html-bibr">92</a>].</p> "> Figure 10
<p>Deepfake and GANprintR-processed deepfake: (<b>a</b>) Deepfake, (<b>b</b>) deepfake after GANprintR [<a href="#B93-sensors-22-04556" class="html-bibr">93</a>].</p> ">
Abstract
:1. Introduction
1.1. Existing Surveys
1.2. Contributions of Study
- A brief overview of the process involved in creating deepfake videos is provided.
- Deepfake content is discussed with respect to different categories such as video, images, and audio, as well as fake content provided in tweets. The process involved in generating these deepfakes is discussed meticulously.
- A comprehensive review of the methods presented to detect deepfakes is discussed with respect to each kind of deepfake.
- Challenges associated with deepfake detection and future research directions are outlined.
2. Survey Methodology
2.1. PRISMA
2.2. Information Source
2.3. Search Strategy
2.4. Inclusion Criteria
- Studies that applied machine learning algorithms.
- Studies that applied deep learning algorithms.
- Studies that evaluated fake image detection, fake video detection, fake audio detection, and fake tweet detection.
- Studies that used algorithms to analyze deepfakes using physiological and biological signals.
2.5. Exclusion Criteria
- Studies that used any machine learning or deep learning approaches for problems that are not directly related to deepfake detection.
- Studies that used other techniques or classic computer vision approaches and do not focus on deepfake detection.
- Studies that did not provide a clear explanation of the machine learning or deep learning model that was used to solve their problem.
- Review studies.
2.6. Study Selection
2.7. Data Extraction
2.8. Quality Assessment
2.9. Quality Assessment Results
3. Deepfake Creation
3.1. FakeApp
3.2. DeepFaceLab
3.3. Face Swap-GAN
3.4. Generative Adversarial Network
3.5. Encoder/Decoder
4. Deepfake Detection
4.1. Deepfake Video Detection
4.1.1. Deepfake Video Detection Using Image Processing Techniques
4.1.2. Deepfake Video Detection Using Physiological Signals
4.1.3. Deepfake Video Detection Using Biological Signals
4.2. Deepfake Image Detection
4.3. Deepfake Audio Detection
4.3.1. Fake Audio Datasets
4.3.2. Deepfake Audio Detection Techniques
4.4. Deepfake Tweet Detection
5. Discussion
6. Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Korshunov, P.; Marcel, S. Deepfakes: A new threat to face recognition? assessment and detection. arXiv 2018, arXiv:1812.08685. [Google Scholar]
- Chawla, R. Deepfakes: How a pervert shook the world. Int. J. Adv. Res. Dev. 2019, 4, 4–8. [Google Scholar]
- Maras, M.H.; Alexandrou, A. Determining authenticity of video evidence in the age of artificial intelligence and in the wake of deepfake videos. Int. J. Evid. Proof 2019, 23, 255–262. [Google Scholar] [CrossRef]
- Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2014, arXiv:stat.ML/1312.6114. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 27. [Google Scholar]
- Chesney, B.; Citron, D. Deep fakes: A looming challenge for privacy, democracy, and national security. Calif. L. Rev. 2019, 107, 1753. [Google Scholar] [CrossRef] [Green Version]
- Delfino, R.A. Pornographic Deepfakes: The Case for Federal Criminalization of Revenge Porn’s Next Tragic Act. Actual Probs. Econ. L. 2020, 14, 105–141. [Google Scholar] [CrossRef]
- Dixon, J.H.B., Jr. Deepfakes-I More Highten Iling Than Photoshop on Steroids. Judges’ J. 2019, 58, 35. [Google Scholar]
- Feldstein, S. How Artificial Intelligence Systems Could Threaten Democracy. The Conversation. 2019. Available online: https://carnegieendowment.org/2019/04/24/how-artificial-intelligence-systems-could-threaten-democracy-pub-78984 (accessed on 9 September 2021).
- Ismail, A.; Elpeltagy, M.; Zaki, M.S.; Eldahshan, K. A New Deep Learning-Based Methodology for Video Deepfake Detection Using XGBoost. Sensors 2021, 21, 5413. [Google Scholar] [CrossRef]
- Day, C. The future of misinformation. Comput. Sci. Eng. 2019, 21, 108. [Google Scholar] [CrossRef]
- Fletcher, J. Deepfakes, artificial intelligence, and some kind of dystopia: The new faces of online post-fact performance. Theatre J. 2018, 70, 455–471. [Google Scholar] [CrossRef]
- What Are Deepfakes and Why the Future of Porn is Terrifying Highsnobiety. 2020. Available online: https://www.highsnobiety.com/p/what-are-deepfakes-ai-porn/ (accessed on 9 September 2021).
- Roose, K. Here come the fake videos, too. The New York Times, 4 March 2018; 14. [Google Scholar]
- Twitter, Pornhub and Other Platforms Ban AI-Generated Celebrity Porn. 2020. Available online: https://thenextweb.com/news/twitter-pornhub-and-other-platforms-ban-ai-generated-celebrity-porn (accessed on 9 September 2021).
- Hasan, H.R.; Salah, K. Combating deepfake videos using blockchain and smart contracts. IEEE Access 2019, 7, 41596–41606. [Google Scholar] [CrossRef]
- Qayyum, A.; Qadir, J.; Janjua, M.U.; Sher, F. Using blockchain to rein in the new post-truth world and check the spread of fake news. IT Prof. 2019, 21, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Borges-Tiago, T.; Tiago, F.; Silva, O.; Guaita Martinez, J.M.; Botella-Carrubi, D. Online users’ attitudes toward fake news: Implications for brand management. Psychol. Mark. 2020, 37, 1171–1184. [Google Scholar] [CrossRef]
- Aldwairi, M.; Alwahedi, A. Detecting fake news in social media networks. Procedia Comput. Sci. 2018, 141, 215–222. [Google Scholar] [CrossRef]
- Jang, S.M.; Kim, J.K. Third person effects of fake news: Fake news regulation and media literacy interventions. Comput. Hum. Behav. 2018, 80, 295–302. [Google Scholar] [CrossRef]
- Figueira, Á.; Oliveira, L. The current state of fake news: Challenges and opportunities. Procedia Comput. Sci. 2017, 121, 817–825. [Google Scholar] [CrossRef]
- Anderson, K.E. Getting Acquainted with Social Networks and Apps: Combating Fake News on Social Media; Library Hi Tech News; Emerald Group Publishing Limited: Bingley, UK, 2018. [Google Scholar]
- Zannettou, S.; Sirivianos, M.; Blackburn, J.; Kourtellis, N. The web of false information: Rumors, fake news, hoaxes, clickbait, and various other shenanigans. J. Data Inf. Qual. 2019, 11, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Borges, P.M.; Gambarato, R.R. The role of beliefs and behavior on facebook: A semiotic approach to algorithms, fake news, and transmedia journalism. Int. J. Commun. 2019, 13, 16. [Google Scholar]
- Nguyen, T.T.; Nguyen, C.M.; Nguyen, D.T.; Nguyen, D.T.; Nahavandi, S. Deep learning for deepfakes creation and detection: A survey. arXiv 2019, arXiv:1909.11573. [Google Scholar] [CrossRef]
- Tolosana, R.; Vera-Rodriguez, R.; Fierrez, J.; Morales, A.; Ortega-Garcia, J. Deepfakes and beyond: A survey of face manipulation and fake detection. Inf. Fusion 2020, 64, 131–148. [Google Scholar] [CrossRef]
- Juefei-Xu, F.; Wang, R.; Huang, Y.; Guo, Q.; Ma, L.; Liu, Y. Countering malicious deepfakes: Survey, battleground, and horizon. arXiv 2021, arXiv:2103.00218. [Google Scholar] [CrossRef] [PubMed]
- Mirsky, Y.; Lee, W. The creation and detection of deepfakes: A survey. ACM Comput. Surv. 2021, 54, 1–41. [Google Scholar] [CrossRef]
- Deshmukh, A.; Wankhade, S.B. Deepfake Detection Approaches Using Deep Learning: A Systematic Review. In Intelligent Computing and Networking; Springer: Singapore, 2021; pp. 293–302. [Google Scholar]
- De keersmaecker, J.; Roets, A. ‘Fake news’: Incorrect, but hard to correct. The role of cognitive ability on the impact of false information on social impressions. Intelligence 2017, 65, 107–110. [Google Scholar]
- Alamoodi, A.; Zaidan, B.; Al-Masawa, M.; Taresh, S.M.; Noman, S.; Ahmaro, I.Y.; Garfan, S.; Chen, J.; Ahmed, M.; Zaidan, A.; et al. Multi-perspectives systematic review on the applications of sentiment analysis for vaccine hesitancy. Comput. Biol. Med. 2021, 139, 104957. [Google Scholar] [CrossRef] [PubMed]
- Alamoodi, A.; Zaidan, B.B.; Zaidan, A.A.; Albahri, O.S.; Mohammed, K.; Malik, R.Q.; Almahdi, E.; Chyad, M.; Tareq, Z.; Albahri, A.S.; et al. Sentiment analysis and its applications in fighting COVID-19 and infectious diseases: A systematic review. Expert Syst. Appl. 2021, 167, 114155. [Google Scholar] [CrossRef]
- Dani, V.S.; Freitas, C.M.D.S.; Thom, L.H. Ten years of visualization of business process models: A systematic literature review. Comput. Stand. Interfaces 2019, 66, 103347. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, E.J.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; McKenzie, J.E. Introduction to PRISMA 2020 and implications for research synthesis methodologists. Res. Synth. Methods 2022, 13, 156–163. [Google Scholar] [CrossRef]
- Keele, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering; Technical Report; Citeseer, 2007; Available online: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=61C69CBE81D5F823599F0B65EB89FD3B?doi=10.1.1.117.471&rep=rep1&type=pdf (accessed on 9 September 2021).
- Faceswap: Deepfakes Software for All. 2020. Available online: https://github.com/deepfakes/faceswap (accessed on 9 September 2021).
- FakeApp 2.2.0. 2020. Available online: https://www.malavida.com/en/soft/fakeapp/ (accessed on 9 September 2021).
- Mitra, A.; Mohanty, S.P.; Corcoran, P.; Kougianos, E. A Machine Learning Based Approach for Deepfake Detection in Social Media Through Key Video Frame Extraction. SN Comput. Sci. 2021, 2, 1–18. [Google Scholar] [CrossRef]
- Perov, I.; Gao, D.; Chervoniy, N.; Liu, K.; Marangonda, S.; Umé, C.; Dpfks, M.; Facenheim, C.S.; RP, L.; Jiang, J.; et al. Deepfacelab: A simple, flexible and extensible face swapping framework. arXiv 2020, arXiv:2005.05535. [Google Scholar]
- Bulat, A.; Tzimiropoulos, G. How far are we from solving the 2d & 3d face alignment problem? (and a dataset of 230,000 3d facial landmarks). In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1021–1030. [Google Scholar]
- Iglovikov, V.; Shvets, A. Ternausnet: U-net with vgg11 encoder pre-trained on imagenet for image segmentation. arXiv 2018, arXiv:1801.05746. [Google Scholar]
- DFaker. 2020. Available online: https://github.com/dfaker/df (accessed on 9 September 2021).
- DeepFake tf: Deepfake Based on Tensorflow. 2020. Available online: https://github.com/StromWine/DeepFaketf (accessed on 9 September 2021).
- Faceswap-GAN. 2020. Available online: https://github.com/shaoanlu/faceswap-GAN (accessed on 9 September 2021).
- Keras-VGGFace: VGGFace Implementation with Keras Framework. 2020. Available online: https://github.com/rcmalli/keras-vggface (accessed on 9 September 2021).
- FaceNet. 2020. Available online: https://github.com/davidsandberg/facenet (accessed on 9 September 2021).
- CycleGAN. 2020. Available online: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix (accessed on 9 September 2021).
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Cho, K.; Van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches. arXiv 2014, arXiv:1409.1259. [Google Scholar]
- BM, N. What is an Encoder Decoder Model? 2020. Available online: https://towardsdatascience.com/what-is-an-encoder-decoder-model-86b3d57c5e1a (accessed on 9 September 2021).
- Lu, L.; Zhang, X.; Cho, K.; Renals, S. A study of the recurrent neural network encoder-decoder for large vocabulary speech recognition. In Proceedings of the Sixteenth Annual Conference of the International Speech Communication Association, Dresden, Germany, 6–10 September 2015. [Google Scholar]
- Noh, H.; Hong, S.; Han, B. Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1520–1528. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. 1SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. 2015. Available online: https://arxiv.org/pdf/1511.00561.pdf (accessed on 9 September 2021).
- Siddiqui, K.A. What is an Encoder/Decoder in Deep Learning? 2018. Available online: https://www.quora.com/What-is-an-Encoder-Decoder-in-Deep-Learning (accessed on 9 September 2021).
- Nirkin, Y.; Keller, Y.; Hassner, T. Fsgan: Subject agnostic face swapping and reenactment. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 7184–7193. [Google Scholar]
- Deng, Y.; Yang, J.; Chen, D.; Wen, F.; Tong, X. Disentangled and controllable face image generation via 3d imitative-contrastive learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 5154–5163. [Google Scholar]
- Li, L.; Bao, J.; Yang, H.; Chen, D.; Wen, F. Faceshifter: Towards high fidelity and occlusion aware face swapping. arXiv 2019, arXiv:1912.13457. [Google Scholar]
- Lattas, A.; Moschoglou, S.; Gecer, B.; Ploumpis, S.; Triantafyllou, V.; Ghosh, A.; Zafeiriou, S. AvatarMe: Realistically Renderable 3D Facial Reconstruction “In-the-Wild”. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 760–769. [Google Scholar]
- Chan, C.; Ginosar, S.; Zhou, T.; Efros, A.A. Everybody Dance Now. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019. [Google Scholar]
- Haliassos, A.; Vougioukas, K.; Petridis, S.; Pantic, M. Lips Don’t Lie: A Generalisable and Robust Approach To Face Forgery Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 5039–5049. [Google Scholar]
- Zhao, H.; Zhou, W.; Chen, D.; Wei, T.; Zhang, W.; Yu, N. Multi-attentional deepfake detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 2185–2194. [Google Scholar]
- Zhao, L.; Zhang, M.; Ding, H.; Cui, X. MFF-Net: Deepfake Detection Network Based on Multi-Feature Fusion. Entropy 2021, 23, 1692. [Google Scholar] [CrossRef] [PubMed]
- Hubens, N.; Mancas, M.; Gosselin, B.; Preda, M.; Zaharia, T. Fake-buster: A lightweight solution for deepfake detection. In Proceedings of the Applications of Digital Image Processing XLIV, International Society for Optics and Photonics, San Diego, CA, USA, 1–5 August 2021; Volume 11842, p. 118420K. [Google Scholar]
- Siegel, D.; Kraetzer, C.; Seidlitz, S.; Dittmann, J. Media Forensics Considerations on DeepFake Detection with Hand-Crafted Features. J. Imaging 2021, 7, 108. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, K.; Lu, W.; Luo, X.; Zhao, X. A lightweight 3D convolutional neural network for deepfake detection. Int. J. Intell. Syst. 2021, 36, 4990–5004. [Google Scholar] [CrossRef]
- King, D.E. Dlib-ml: A machine learning toolkit. J. Mach. Learn. Res. 2009, 10, 1755–1758. [Google Scholar]
- Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 2016, 23, 1499–1503. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Niu, S.; Wang, H. Image inpainting detection based on multi-task deep learning network. IETE Tech. Rev. 2021, 38, 149–157. [Google Scholar] [CrossRef]
- Malolan, B.; Parekh, A.; Kazi, F. Explainable deep-fake detection using visual interpretability methods. In Proceedings of the 2020 3rd International Conference on Information and Computer Technologies (ICICT), San Jose, CA, USA, 9–12 March 2020; pp. 289–293. [Google Scholar]
- Kharbat, F.F.; Elamsy, T.; Mahmoud, A.; Abdullah, R. Image feature detectors for deepfake video detection. In Proceedings of the 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA), Abu Dhabi, United Arab Emirates, 3–7 November 2019; pp. 1–4. [Google Scholar]
- Li, Y.; Lyu, S. Exposing deepfake videos by detecting face warping artifacts. arXiv 2018, arXiv:1811.00656. [Google Scholar]
- Yang, X.; Li, Y.; Lyu, S. Exposing deep fakes using inconsistent head poses. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 8261–8265. [Google Scholar]
- Güera, D.; Delp, E.J. Deepfake video detection using recurrent neural networks. In Proceedings of the 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Auckland, New Zealand, 27–30 November 2018; pp. 1–6. [Google Scholar]
- Chen, P.; Liu, J.; Liang, T.; Zhou, G.; Gao, H.; Dai, J.; Han, J. Fsspotter: Spotting face-swapped video by spatial and temporal clues. In Proceedings of the 2020 IEEE International Conference on Multimedia and Expo (ICME), London, UK, 6–10 July 2020; pp. 1–6. [Google Scholar]
- Ranjan, P.; Patil, S.; Kazi, F. Improved Generalizability of Deep-Fakes Detection using Transfer Learning Based CNN Framework. In Proceedings of the 2020 3rd International Conference on Information and Computer Technologies (ICICT), San Jose, CA, USA, 9–12 March 2020; pp. 86–90. [Google Scholar]
- Jafar, M.T.; Ababneh, M.; Al-Zoube, M.; Elhassan, A. Forensics and analysis of deepfake videos. In Proceedings of the 2020 11th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 7–9 April 2020; pp. 53–58. [Google Scholar]
- Li, Y.; Chang, M.C.; Lyu, S. In ictu oculi: Exposing ai created fake videos by detecting eye blinking. In Proceedings of the 2018 IEEE International Workshop on Information Forensics and Security (WIFS), Hong Kong, China, 11–13 December 2018; pp. 1–7. [Google Scholar]
- Jung, T.; Kim, S.; Kim, K. DeepVision: Deepfakes detection using human eye blinking pattern. IEEE Access 2020, 8, 83144–83154. [Google Scholar] [CrossRef]
- Siddiqui, H.U.R.; Shahzad, H.F.; Saleem, A.A.; Khan Khakwani, A.B.; Rustam, F.; Lee, E.; Ashraf, I.; Dudley, S. Respiration Based Non-Invasive Approach for Emotion Recognition Using Impulse Radio Ultra Wide Band Radar and Machine Learning. Sensors 2021, 21, 8336. [Google Scholar] [CrossRef]
- Jin, X.; Ye, D.; Chen, C. Countering Spoof: Towards Detecting Deepfake with Multidimensional Biological Signals. Secur. Commun. Netw. 2021, 2021, 6626974. [Google Scholar] [CrossRef]
- Ciftci, U.A.; Demir, I.; Yin, L. Fakecatcher: Detection of synthetic portrait videos using biological signals. IEEE Trans. Pattern Anal. Mach. Intell. 2020. [Google Scholar] [CrossRef] [PubMed]
- de Haan, G.; Jeanne, V. Robust Pulse Rate From Chrominance-Based rPPG. IEEE Trans. Biomed. Eng. 2013, 60, 2878–2886. [Google Scholar] [CrossRef]
- Zhao, C.; Lin, C.L.; Chen, W.; Li, Z. A Novel Framework for Remote Photoplethysmography Pulse Extraction on Compressed Videos. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Feng, L.; Po, L.M.; Xu, X.; Li, Y.; Ma, R. Motion-Resistant Remote Imaging Photoplethysmography Based on the Optical Properties of Skin. IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 879–891. [Google Scholar] [CrossRef]
- Prakash, S.; Tucker, C.S. Bounded Kalman filter method for motion-robust, non-contact heart rate estimation. Biomed. Opt. Express 2018, 2, 873–897. [Google Scholar] [CrossRef]
- Tulyakov, S.; Alameda-Pineda, X.; Ricci, E.; Yin, L.; Cohn, J.F.; Sebe, N. Self-Adaptive Matrix Completion for Heart Rate Estimation from Face Videos under Realistic Conditions. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2396–2404. [Google Scholar]
- Demir, I.; Ciftci, U.A. Where Do Deep Fakes Look? Synthetic Face Detection via Gaze Tracking. In ACM Symposium on Eye Tracking Research and Applications; ETRA ’21 Full Papers; Association for Computing Machinery: New York, NY, USA, 2021. [Google Scholar]
- Ciftci, U.A.; Demir, I.; Yin, L. How do the hearts of deep fakes beat? deep fake source detection via interpreting residuals with biological signals. In Proceedings of the 2020 IEEE international joint conference on biometrics (IJCB), Houston, TX, USA, 28 September 28–1 October 2020; pp. 1–10. [Google Scholar]
- Guarnera, L.; Giudice, O.; Battiato, S. Deepfake detection by analyzing convolutional traces. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 666–667. [Google Scholar]
- Corcoran, M.; Henry, M. The Tom Cruise deepfake that set off ‘terror’ in the heart of Washington DC. 2021. Available online: https://www.abc.net.au/news/2021-06-24/tom-cruise-deepfake-chris-ume-security-washington-dc/100234772 (accessed on 12 August 2021).
- Neves, J.C.; Tolosana, R.; Vera-Rodriguez, R.; Lopes, V.; Proença, H.; Fierrez, J. Ganprintr: Improved fakes and evaluation of the state of the art in face manipulation detection. IEEE J. Sel. Top. Signal Process. 2020, 14, 1038–1048. [Google Scholar] [CrossRef]
- Dang, H.; Liu, F.; Stehouwer, J.; Liu, X.; Jain, A.K. On the detection of digital face manipulation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern recognition, Seattle, WA, USA, 13–19 June 2020; pp. 5781–5790. [Google Scholar]
- Vezzetti, E.; Marcolin, F.; Tornincasa, S.; Maroso, P. Application of geometry to rgb images for facial landmark localisation-a preliminary approach. Int. J. Biom. 2016, 8, 216–236. [Google Scholar] [CrossRef]
- Wang, S.Y.; Wang, O.; Owens, A.; Zhang, R.; Efros, A.A. Detecting photoshopped faces by scripting photoshop. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 10072–10081. [Google Scholar]
- Tariq, S.; Lee, S.; Kim, H.; Shin, Y.; Woo, S.S. Detecting both machine and human created fake face images in the wild. In Proceedings of the 2nd International Workshop on Multimedia Privacy and Security, Toronto, ON, Canada, 15 October 2018; pp. 81–87. [Google Scholar]
- Matern, F.; Riess, C.; Stamminger, M. Exploiting visual artifacts to expose deepfakes and face manipulations. In Proceedings of the 2019 IEEE Winter Applications of Computer Vision Workshops (WACVW), Waikoloa Village, HA, USA, 7–11 January 2019; pp. 83–92. [Google Scholar]
- Bharati, A.; Singh, R.; Vatsa, M.; Bowyer, K.W. Detecting facial retouching using supervised deep learning. IEEE Trans. Inf. Forensics Secur. 2016, 11, 1903–1913. [Google Scholar] [CrossRef]
- Li, L.; Bao, J.; Zhang, T.; Yang, H.; Chen, D.; Wen, F.; Guo, B. Face x-ray for more general face forgery detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 5001–5010. [Google Scholar]
- Reimao, R.; Tzerpos, V. FoR: A Dataset for Synthetic Speech Detection. In Proceedings of the 2019 International Conference on Speech Technology and Human-Computer Dialogue (SpeD), Timisoara, Romania, 10–12 October 2019; pp. 1–10. [Google Scholar]
- Lataifeh, M.; Elnagar, A. Ar-DAD: Arabic diversified audio dataset. Data Brief 2020, 33, 106503. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, D.M.; Rodriguez, Y.; Renza, D. A dataset of histograms of original and fake voice recordings (H-Voice). Data Brief 2020, 29, 105331. [Google Scholar] [CrossRef]
- Wu, Z.; Kinnunen, T.; Evans, N.; Yamagishi, J.; Hanilçi, C.; Sahidullah, M. ASVspoof 2015: The First Automatic Speaker Verification Spoofing and Countermeasures Challenge. 2015. Available online: https://www.researchgate.net/publication/279448325_ASVspoof_2015_the_First_Automatic_Speaker_Verification_Spoofing_and_Countermeasures_Challenge (accessed on 4 September 2021).
- Kinnunen, T.; Sahidullah, M.; Delgado, H.; Todisco, M.; Evans, N.; Yamagishi, J.; Lee, K.A. The 2nd Automatic Speaker Verification Spoofing and Countermeasures Challenge (ASVspoof 2017) Database, Version 2. 2018. Available online: https://erepo.uef.fi/handle/123456789/7184 (accessed on 14 September 2021).
- Todisco, M.; Wang, X.; Vestman, V.; Sahidullah, M.; Delgado, H.; Nautsch, A.; Yamagishi, J.; Evans, N.; Kinnunen, T.; Lee, K.A. ASVspoof 2019: Future Horizons in Spoofed and Fake Audio Detection. arXiv 2019, arXiv:1904.05441. [Google Scholar]
- Rodríguez-Ortega, Y.; Ballesteros, D.M.; Renza, D. A machine learning model to detect fake voice. In Proceedings of the International Conference on Applied Informatics, Madrid, Spain, 7–9 November 2019; Springer: Berlin/Heidelberg, Germany, 2020; pp. 3–13. [Google Scholar]
- Bhatia, K.; Agrawal, A.; Singh, P.; Singh, A.K. Detection of AI Synthesized Hindi Speech. arXiv 2022, arXiv:2203.03706. [Google Scholar]
- Borrelli, C.; Bestagini, P.; Antonacci, F.; Sarti, A.; Tubaro, S. Synthetic Speech Detection Through Short-Term and Long-Term Prediction Traces. EURASIP J. Inform. Security 2021, 1–14. [Google Scholar] [CrossRef]
- Liu, T.; Yan, D.; Wang, R.; Yan, N.; Chen, G. Identification of Fake Stereo Audio Using SVM and CNN. Information 2021, 12, 263. [Google Scholar] [CrossRef]
- Camacho, S.; Ballesteros, D.M.; Renza, D. Fake Speech Recognition Using Deep Learning. In Applied Computer Sciences in Engineering; Figueroa-García, J.C., Díaz-Gutierrez, Y., Gaona-García, E.E., Orjuela-Cañón, A.D., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 38–48. [Google Scholar]
- Wang, R.; Juefei-Xu, F.; Huang, Y.; Guo, Q.; Xie, X.; Ma, L.; Liu, Y. DeepSonar: Towards Effective and Robust Detection of AI-Synthesized Fake Voices. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1207–1216. [Google Scholar]
- Lataifeh, M.; Elnagar, A.; Shahin, I.; Nassif, A.B. Arabic audio clips: Identification and discrimination of authentic Cantillations from imitations. Neurocomputing 2020, 418, 162–177. [Google Scholar] [CrossRef]
- Fagni, T.; Falchi, F.; Gambini, M.; Martella, A.; Tesconi, M. TweepFake: About detecting deepfake tweets. PLoS ONE 2021, 16, e0251415. [Google Scholar] [CrossRef]
- Sanderson, C. VidTIMIT Audio-Video Dataset. Zenodo. 2001. Available online: https://zenodo.org/record/158963/export/xm#.Yqf3q-xByUk (accessed on 9 September 2021).
- Li, Y.; Yang, X.; Sun, P.; Qi, H.; Lyu, S. Celeb-DF: A Large-scale Challenging Dataset for DeepFake Forensics. In Proceedings of the IEEE Conference on Computer Vision and Patten Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- idiap. DEEPFAKETIMIT. idiap Research Institute. 2022. Available online: https://www.idiap.ch/en/dataset/deepfaketimit (accessed on 9 September 2021).
- LYTIC. FaceForensics++. Kaggle. 2020. Available online: https://www.kaggle.com/datasets/sorokin/faceforensics (accessed on 9 September 2021).
- Li, Y.; Chang, M.C.; Lyu, S. In ictu oculi: Exposing ai generated fake face videos by detecting eye blinking. arXiv 2018, arXiv:1806.02877. [Google Scholar]
Reference | Type | DF Detection | DF Creation | DF Tweets | Timeline | Published | Scope |
---|---|---|---|---|---|---|---|
[25] | Survey | Image/Video | Image/Video | No | 2019 | Arxiv | Covers deepfake creation and detection approaches presented from 2017 to 2020, however, there are few studies from 2020. |
[26] | Survey | Image | Image | No | 2020 | Elsevier | The survey covers the studies on face manipulation approaches only and does not include deepfake video creation and detection. |
[27] | Survey | Image/Video | Image/Video | No | 2021 | Arxiv | Recent studies on face synthesis, attribute manipulation, identity swap, and expression swap are discussed, in addition to the deepfake datasets. |
[28] | Survey | Image/Video | Image/Video | No | 2021 | ACM | Focuses on the potential of various deep learning networks for creating and detecting deepfakes. Similarly, well-known architectures from different studies are discussed. |
[29] | Survey | Image/Video | Image/Video | No | 2021 | Springer | Covers a brief overview of different deepfake creation and detection tools and covers a small range of studies. |
Current | SLR | Image/Video | Image/Video | Yes | 2021 | Sensors | Focuses on the recent works regarding deepfake creation and detection techniques. In addition to images and videos, it covers deepfake tweets. Many recent studies are covered regarding famous deepfake apps and approaches. |
Topic | No. of Articles |
---|---|
Deepfake Creation | 18 |
Deepfake Detection | 20 |
Deepfake Video Detection Using Image Processing Techniques | 7 |
Deepfake Video Detection Using Physiological Signals | 4 |
Deepfake Video Detection Using Biological Signals | 1 |
Deepfake Audio Detection | 5 |
Deepfake Image Detection | 7 |
Deepfake Tweet Detection | 1 |
Total | 58 |
Tool | Link & Key Features |
---|---|
DeepFaceLab | –https://github.com/iperov/DeepFaceLab. –Reduced training time of 3 h. –Better performance for pose and expression adaptation. –Sharp facial landmarks such as eyes and teeth. –Supports large scale dataset of up to 100 k images to improve image quality. –Supports lip manipulation, head replacement and do-age, etc. |
FSGAN | –https://github.com/YuvalNirkin/fsgan. –Face-swapping is unified with reenactment model that may be used for any pair of faces without the need for training on the pair of faces in question – Adapt to changes in both position and emotion [57]. |
DiscoFaceGAN | –https://github.com/microsoft/DiscoFaceGAN. –Generates face pictures of virtual individuals with latent characteristics such as identity, expression, posture, and lighting that are independent of each other. –Consider using 3D priors in adversarial learning [58]. |
FaceShifter | –https://lingzhili.com/FaceShifterPage. –Facial swapping in high fidelity by leveraging and combining the target features. Any fresh face combination can be used without specialized training [59]. |
AvatarMe | –https://github.com/lattas/AvatarMe. –From random ‘in-the-wild’ photos, creates a 3D face. A single low-quality picture may be used to rebuild a 3D face with a resolution of 4 K or 6 K. [60] |
“Do as I Do” Motion Transfer | –github.com/carolineec/EverybodyDanceNow. –By learning a video-to-video translation, one can automatically transmit motion from one person to another. –Can generate a dance movie with numerous people that is motion-synchronized [61]. |
Reference | Dataset | Classifier | Method | Performance |
---|---|---|---|---|
[72] | Own dataset created [73] | SVM | FP extraction method: HOG, ORB, SURF, BRISK, FAST, KAZE | HOG 95%, ORB 91%, SURF 90.5%, BRISK 87%, FAST 86.5%, & KAZE 76.5% |
[74] | UADFV | SVM | 3D head pose | 97.4% AUC |
[79] | Self-made dataset | DNN | Eyeblink + LRCN | 99% AUC |
[75] | Own dataset | CNN and LSTM | CNN_LSTM | 97.1% AUC |
[91] | Self-made dataset | KNN, SVM, and LDA | AttGAN, StarGAN, GDWCT, StyleGAN and StyleGAN2 | 99.81% from StyleGAN2 with SVM |
[93] | 100K-Faces (StyleGAN) and iFakeFace DB | Deep learning | CNN | EER = 0.3% from 100K-Faces (StyleGAN), EER = 4.5% from iFakeFace DB |
[94] | DFFD (ProGAN, StyleGAN) | Deep learning | CNN + attention mechanism | AUC = 100%, EER = 0.1% |
[96] | Own (Adobe Photoshop) | Deep learning features | DRN | AP = 99.8% |
[97] | Own (ProGAN, Adobe Photoshop) | Deep learning features | CNN | AUC = 99.9%, AUC = 74.9% |
[80] | Self-made dataset | Machine learning | Eye blinking | 87.5% |
[99] | Own (Celebrity Retouching, ND-IIITD Retouching) | Deep learning features (face patches) | RBM | CR= 96.2%, ND-IIITDR = 87.1% |
[114] | Own TweepFake | Machine learning | LR_BOW, RF_BOW, SVC_BOW, LR_BERT, RF_BERT, SVC_BERT, CHAR_CNN, CHAR_GRU, CHAR_CNNGRU, BERT_FT, DISTILBERT_FT, ROBERTA_FT, and XLNET_FT | ROBERTA_FT 89.6%, LR_BOW 80.4%, RF_BOW 77.2%, SVC_BOW 81.1%, LR_BERT 83.5%, RF_BERT 82.7%, SVC_BERT 84.2%, CHAR_CNN 85.1%, CHAR_GRU 83%, CHAR_CNNGRU 83.7%, BERT_FT 89.1%, DISTILBERT_FT 88.7%, and XLNET_FT 87.7% |
[83] | Own Deep Fakes dataset | CNN | Biological signals | 91.7% |
Reference | Dataset | Classifier | Method | Performance |
---|---|---|---|---|
[78] | Deepfake Forensics Vid-TIMIT dataset | CNN | DFT-MF | Deepfake Forensics dataset 71.25% Vid-TIMIT dataset LQ 98.7% & HQ 73.1% |
[71] | FaceForensics++ dataset | CNN | CNN XceptionNet | At 1.3x background scale 94.33% accuracy At 2x background scale 90.17% accuracy |
[1] | DeepfakeTIMIT (LQ) DeepfakeTIMIT (HQ) | PCA+RNN PCA+LDA SVM | Audio-visual features | DeepfakeTIMIT (LQ) EER = 3.3% DeepfakeTIMIT (HQ) EER = 8.9% |
[98] | FaceForensics dataset | Logistic regression MLP | Visual features | 86.6% LR 82.3% MLP |
[76] | FaceForensics++, DeepfakeTIMIT, UADVF, and Celeb-DF datasets | CNN, LSTM | FSSPOTTER | FaceForensics++ 100%, DeepfakeTIMIT (LQ) 99.5% DeepfakeTIMIT (HQ) 98.5%, UADVF 91.1% and Celeb-DF 77.6% |
[77] | DFD Celeb-DF, DFDC | CNN | XceptionNet | Transfer learning: With transfer learning 86.49%, without transfer learning 79.62% |
[10] | Celeb-DF-FaceForensics++ (c23) | CNN | YOLO-CNN-XGBoost | 90.62% AUC, 90.73% accuracy, 93.53% specificity, 85.39% sensitivity, 85.39% recall, 87.36% precision, and 86.36% F1 score |
[62] | DFO, FSh, CDF, and DFDC | ResNet-18 and MS-TCN | Semantic irregularities | 82.4% for CDF, 73.5% for DFDC, 97.1% for FSh, and 97.6% for DFo datasets. |
[63] | FF++, DFDC, and CDF | CNN | Multi-attentional framework | 97.60% for FF++, 67.44% for CDF and 0.1679 Logloss for DFDC. |
[64] | DFD, CDF, and FF++ | NN and CNN | Multi-feature fusion | 99.73% for FF++, 92.53% for DFD, and 75.07% for CDF dataset. |
[65] | DFDC | NN and CNN | NN compression | 93.9% for DFDC dataset. |
[66] | J48 | TIMIT-DF, DFD, and CDF | Feature fusion | 94.21% for TIMIT-DF, 96.36% for DFD, and 94.17% for CDF. |
[67] | 3D CNN | FF++, TIMIT HQ, TIMIT LQ, DFDC-pre, and CDF | Channel transformation | 99.83% for FF++, 99.28% for TIMIT HQ, 99.60% for TIMIT LQ, 93.98% for DFDC-pre, and 98.07% for CDF dataset. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahzad, H.F.; Rustam, F.; Flores, E.S.; Luís Vidal Mazón, J.; de la Torre Diez, I.; Ashraf, I. A Review of Image Processing Techniques for Deepfakes. Sensors 2022, 22, 4556. https://doi.org/10.3390/s22124556
Shahzad HF, Rustam F, Flores ES, Luís Vidal Mazón J, de la Torre Diez I, Ashraf I. A Review of Image Processing Techniques for Deepfakes. Sensors. 2022; 22(12):4556. https://doi.org/10.3390/s22124556
Chicago/Turabian StyleShahzad, Hina Fatima, Furqan Rustam, Emmanuel Soriano Flores, Juan Luís Vidal Mazón, Isabel de la Torre Diez, and Imran Ashraf. 2022. "A Review of Image Processing Techniques for Deepfakes" Sensors 22, no. 12: 4556. https://doi.org/10.3390/s22124556
APA StyleShahzad, H. F., Rustam, F., Flores, E. S., Luís Vidal Mazón, J., de la Torre Diez, I., & Ashraf, I. (2022). A Review of Image Processing Techniques for Deepfakes. Sensors, 22(12), 4556. https://doi.org/10.3390/s22124556