An On-Film AMC Antenna Insert-Molded in Earbuds with Enhancement in In-Ear and In Situ Received-Signal Sensing
<p>The earphone placed in the ear of the SAM: (<b>a</b>) overall view; (<b>b</b>) antenna in the earbud.</p> "> Figure 2
<p>Investigating the conventional antenna: (<b>a</b>) geometry; (<b>b</b>) attached to the human phantom; (<b>c</b>) S<sub>11</sub>; (<b>d</b>) radiated field pattern of the modified monopole antenna in the free space; (<b>e</b>) radiated field pattern of the modified monopole antenna with the phantom; (<b>f</b>) SAR.</p> "> Figure 3
<p>On−film antenna earphone in free space: (<b>a</b>) initial geometry of the proposed antenna; (<b>b</b>) layer structure; (<b>c</b>) S<sub>11</sub>; (<b>d</b>) radiated field pattern in free space; (<b>e</b>) radiated field attached to the human phantom; (<b>f</b>) SAR.</p> "> Figure 3 Cont.
<p>On−film antenna earphone in free space: (<b>a</b>) initial geometry of the proposed antenna; (<b>b</b>) layer structure; (<b>c</b>) S<sub>11</sub>; (<b>d</b>) radiated field pattern in free space; (<b>e</b>) radiated field attached to the human phantom; (<b>f</b>) SAR.</p> "> Figure 4
<p>On−film antenna earbud in free space: (<b>a</b>) combined with the AMC; (<b>b</b>) layer structure; (<b>c</b>) geometry of the AMC; (<b>d</b>) S<sub>11</sub>; (<b>e</b>) radiated field pattern in free space; (<b>f</b>) radiated field pattern attached to the human phantom; (<b>g</b>) SAR; (<b>h</b>) comparison of upward near-field strength.</p> "> Figure 4 Cont.
<p>On−film antenna earbud in free space: (<b>a</b>) combined with the AMC; (<b>b</b>) layer structure; (<b>c</b>) geometry of the AMC; (<b>d</b>) S<sub>11</sub>; (<b>e</b>) radiated field pattern in free space; (<b>f</b>) radiated field pattern attached to the human phantom; (<b>g</b>) SAR; (<b>h</b>) comparison of upward near-field strength.</p> "> Figure 5
<p>Fabricated antennas and measured S<sub>11</sub> and far-field patterns for the conventional antenna (CA) and OFAA: (<b>a</b>) photographs and S<sub>11</sub> of (<b>b</b>) CA; (<b>c</b>) initial geometry (short radiator without the AMC); (<b>d</b>) OFAA; (<b>e</b>) beam pattern of the CA (<b>left</b>) in free space and (<b>right</b>) in the ear; (<b>f</b>) beam pattern of the initial geometry (<b>left</b>) in free space and (<b>right</b>) in the ear; (<b>g</b>) beampattern of the OFAA (<b>left</b>) in free space and (<b>right</b>) in the ear.</p> "> Figure 5 Cont.
<p>Fabricated antennas and measured S<sub>11</sub> and far-field patterns for the conventional antenna (CA) and OFAA: (<b>a</b>) photographs and S<sub>11</sub> of (<b>b</b>) CA; (<b>c</b>) initial geometry (short radiator without the AMC); (<b>d</b>) OFAA; (<b>e</b>) beam pattern of the CA (<b>left</b>) in free space and (<b>right</b>) in the ear; (<b>f</b>) beam pattern of the initial geometry (<b>left</b>) in free space and (<b>right</b>) in the ear; (<b>g</b>) beampattern of the OFAA (<b>left</b>) in free space and (<b>right</b>) in the ear.</p> "> Figure 6
<p>POPEYE-V10 [<a href="#B35-sensors-22-04523" class="html-bibr">35</a>].</p> "> Figure 7
<p>Antennas in the earbuds and RSSI tests using the head phantom: (<b>a</b>) plastic zorb ball mimicking a sensing sphere; (<b>b</b>) configuration of the measurement; (<b>c</b>) human phantom centered in the zorb ball as a TX in the form of a BLE module; (<b>d</b>) scheme to collect data from grid of sensors on the sphere; (<b>e</b>) device positioned on the SAM for the RSSI test; (<b>f</b>) measured points on the latitudes; (<b>g</b>) received signal strength distribution plot on the ball about the conventional antenna earbud; (<b>h</b>) received signal strength distribution plot on the ball about the proposed antenna earbud.</p> "> Figure 7 Cont.
<p>Antennas in the earbuds and RSSI tests using the head phantom: (<b>a</b>) plastic zorb ball mimicking a sensing sphere; (<b>b</b>) configuration of the measurement; (<b>c</b>) human phantom centered in the zorb ball as a TX in the form of a BLE module; (<b>d</b>) scheme to collect data from grid of sensors on the sphere; (<b>e</b>) device positioned on the SAM for the RSSI test; (<b>f</b>) measured points on the latitudes; (<b>g</b>) received signal strength distribution plot on the ball about the conventional antenna earbud; (<b>h</b>) received signal strength distribution plot on the ball about the proposed antenna earbud.</p> "> Figure 7 Cont.
<p>Antennas in the earbuds and RSSI tests using the head phantom: (<b>a</b>) plastic zorb ball mimicking a sensing sphere; (<b>b</b>) configuration of the measurement; (<b>c</b>) human phantom centered in the zorb ball as a TX in the form of a BLE module; (<b>d</b>) scheme to collect data from grid of sensors on the sphere; (<b>e</b>) device positioned on the SAM for the RSSI test; (<b>f</b>) measured points on the latitudes; (<b>g</b>) received signal strength distribution plot on the ball about the conventional antenna earbud; (<b>h</b>) received signal strength distribution plot on the ball about the proposed antenna earbud.</p> ">
Abstract
:1. Introduction
2. Design of the On-Film AMC Antenna and Its Performance
2.1. Basic Aspects of the Earbud Antenna Design
2.2. Proposed Approach of Novel Earbud Antenna
3. Electromagnetic Tests of the Antenna Alone and Placed in the Wearable Device
3.1. Realization of the OFAA as the Proposed Antenna
3.2. Additional Evaluation on the Head–Ear Phantom for the RF Test of the OFAA
3.3. Realistic and New Wireles Test Approach from a Communication System Perspective
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garrity, J. Harnessing the Internet of Things for Global Development. SSRN Electron. J. 2015. [Google Scholar] [CrossRef]
- Chen, Y. Challenges and opportunities of Internet of Things. In Proceedings of the 2002 Asia and South Pacific Design Automation Conference, Sydney, Australia, 30 January–2 February 2012. [Google Scholar]
- Gazis, V.; Sasloglou, K.; Frangiadakis, N.; Kikiras, P.; Merentitis, A.; Mathioudakis, K.; Mazarakis, G. Architectural Blueprints of a Unified Sensing Platform for the Internet of Things. In Proceedings of the 2013 22nd International Conference on Computer Communication and Networks (ICCCN), Nassau, Bahamas, 30 July–2 August 2013. [Google Scholar]
- Routray, S.K.; Sharmila, K.P.; Javali, A.; Ghosh, A.D.; Sarangi, S. An Outlook of Narrowband IoT for Industry 4.0. In Proceedings of the 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 15–17 July 2020. [Google Scholar]
- Nagakannan, M.; Inbaraj, C.J.; Kannaa, K.M.; Ramkumar, S. A Recent Review On IoT Based Techniques And Applications. In Proceedings of the 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 30–31 August 2018. [Google Scholar]
- Imran, M.A.; Zoha, A.; Zhang, L.; Abbasi, Q.H. Grand Challenges in IoT and Sensor Networks. Front. Commun. Netw. 2020, 1, 7. [Google Scholar] [CrossRef]
- Surantha, N.; Atmaja, P.; David; Wicaksonod, M. A Review of Wearable Internet-of-Things Device for Healthcare. Procedia Comput. Sci. 2021, 179, 936–943. [Google Scholar] [CrossRef]
- Ometov, A.; Shubina, V.; Klus, L.; Skibinska, J.; Saafi, S.; Pascacio, P.; Flueratoru, L.; Gaibor, D.Q.; Chukhno, N.; Chukhno, O.; et al. Survey on Wearable Technology: History, State-of-the-Art and Current Challenges. Comput. Netw. 2021, 193, 108074. [Google Scholar] [CrossRef]
- Sun, Y.; Cheung, S.W.; Yuk, T.I. Design of a textile ultra-wideband antenna with stable performance for body-centric wireless communications. IET Microw. Antennas Propag. 2014, 8, 1363–1375. [Google Scholar] [CrossRef]
- Mendes, C.; Peixeiro, C. A Dual-Mode Single-Band Wearable Microstrip Antenna for Body Area Networks. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 3055–3058. [Google Scholar] [CrossRef]
- Liu, Z.G.; Guo, Y.X. Compact Low-Profile Dual Band Metamaterial Antenna for Body Centric Communications. IEEE Antennas Wirel. Propag. Lett. 2014, 14, 863–866. [Google Scholar] [CrossRef]
- Zahng, X.Y.; Wong, H.; Mo, T.; Cao, Y.F. Dual-Band Dual-Mode Button Antenna for On-Body and Off-Body Communications. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 933–941. [Google Scholar] [CrossRef]
- El Atrash, M.; Abdalla, M.A.; Elhennawy, H.M. A Wearable Dual-Band Low Profile High Gain Low SAR Antenna AMC-Backed for WBAN Applications. IEEE Trans. Antennas Propag. 2019, 67, 6378–6388. [Google Scholar] [CrossRef]
- Shaw, T.; Samanta, G.; Mitra, D.; Mandal, B.; Augustine, R. Design of Metamaterial Based Efficient Wireless Power Transfer System Utilizing Antenna Topology for Wearable Devices. Sensors 2021, 21, 3448. [Google Scholar] [CrossRef]
- Tong, X.; Liu, C.; Liu, X.; Guo, H.; Yang, X. Switchable ON-/OFF-Body Antenna for 2.45 GHz WBAN Applications. IEEE Trans. Antennas Propag. 2018, 66, 967–971. [Google Scholar] [CrossRef]
- Arif, A.; Zubair, M.; Ali, M.; Khan, M.U.; Mehmood, M.Q. A Compact, Low-Profile Fractal Antenna for Wearable On-Body WBAN Applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 981–985. [Google Scholar] [CrossRef]
- Li, X.; Jalivand, M.; Sit, Y.L.; Zwick, T. A Compact Double-Layer On-Body Matched Bowtie Antenna for Medical Diagnosis. IEEE Trans. Antennas Propag. 2014, 62, 1808–1816. [Google Scholar] [CrossRef]
- Khan, T.; Rahman, M. Wearable Tri-Band Antenna for Switching Between WLAN and Bluetooth for Body Centric Wireless Communication. Wirel. Pers. Commun. 2020, 117, 1459–1470. [Google Scholar] [CrossRef]
- Su, W.; Zhu, J.; Liao, H.; Tentzeris, M.M. Wearable Antennas for Cross-Body Communication and Human Activity Recognition. IEEE Access 2020, 8, 58575–58584. [Google Scholar] [CrossRef]
- Vaezi, S.; Rezaei, P.; Khazaei, A.A. A miniaturized wideband wearable antenna with circular polarization for medical application. Int. J. Electron. Commun. 2022, 150, 154197. [Google Scholar] [CrossRef]
- Al-Adhami, A.; Ercelebi, E. A Flexible Metamaterial Based Printed Antenna for Wearable Biomedical Applications. Sensors 2021, 21, 7960. [Google Scholar] [CrossRef]
- Alqadami, A.S.M.; Stancombe, A.E.; Bialkowski, K.S.; Abbosh, A. Flexible Meander-Line Antenna Array for Wearable Electromagnetic Head Imaging. IEEE Trans. Antennas Propag. 2021, 69, 4206–4211. [Google Scholar] [CrossRef]
- Cihangir, A.; Gianesello, F.; Luxey, C. Dual-Antenna Concept with Complementary Radiation Patterns for Eyewear Applications. IEEE Trans. Antennas Propag. 2018, 66, 3056–3063. [Google Scholar] [CrossRef]
- Zahid, Z.; Lee, H.K.; Kim, M.G.; Kim, H.H.; Kim, H.D. Antenna design using speaker wire for a Bluetooth ear set. Microw. Opt. Technol. Lett. 2019, 3, 747–752. [Google Scholar] [CrossRef]
- Zhekov, S.S.; Mikkelsen, J.H.; Pedersen, G.F. Over-the-Air Evaluation of User Body Loss for Popular In-Ear Bluetooth Earbuds. Int. J. Antennas Propag. 2021, 2021, 5534119. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; Azpilicueta, L.; Moghadasi, M.N.; See, C.H.; Liu, B.; Alhameed, R.A.A.; Falcone, F.; Huynen, I.; Denidni, T.A.; et al. A Comprehensive Survey of “Metamaterial Transmission-Line Based Antennas: Design, Challenges, and Applications”. IEEE Access 2020, 8, 144778–144808. [Google Scholar] [CrossRef]
- Stutzman, W.L.; Thiele, G.A. Antenna Theory and Design, 3rd ed.; John Wiley & Son: Hoboken, NJ, USA, 2012; ISBN 978-0-470-57664-9. [Google Scholar]
- Caloz, C.; Itoh, T. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications; Wiley-IEEE Press: Hoboken, NJ, USA, 2005; ISBN 978-0-471-66985-2. [Google Scholar]
- Khattak, M.K.; Lee, C.; Park, H.; Kahng, S. RF Channel-Selectivity Sensing by a Small Antenna of Metamaterial Channel Filters for 5G Sub-6-GHz Bands. Sensors 2020, 20, 1989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khattak, M.K.; Lee, C.; Park, H.; Kahng, S. A Fully-Printed CRLH Dual-Band Dipole Antenna Fed by a Compact CRLH Dual-Band Balun. Sensors 2020, 20, 4991. [Google Scholar] [CrossRef]
- Rennings, A.; Otto, S.; Mosig, J.; Caloz, C.; Wolf, I. Extended composite right/left-handed (E-CRLH) metamaterial and its application as quadband quarter-wavelength transmission line. In Proceedings of the 2006 Asia-Pacific Microwave Conference, Yokohama, Japan, 12–15 December 2006. [Google Scholar]
- Jang, G.; Kahng, S. Compact metamaterial zeroth-order resonator bandpass filter for a UHF band and its stopband improvement by transmission zeros. IET Microw. Antennas Propag. 2011, 5, 1175–1181. [Google Scholar] [CrossRef]
- Veltz3D. Available online: http://temp2.bizsite.co.kr/sub02_a.html (accessed on 3 October 2021).
- Anritsu. Available online: https://www.anritsu.com/ko-kr/test-measurement/products/ms46122a (accessed on 3 October 2021).
- Speag. Available online: https://speag.swiss/products/em-phantoms/phantoms-3/head-p10/ (accessed on 3 October 2021).
Parameter | Value |
---|---|
T_C1 | 0.700 mm |
T_R | 0.018 mm |
T_C2 | 0.550 mm |
T_P | 3.000 mm |
T_PCB | 0.800 mm |
Parameter | Value |
---|---|
T_PSA | 0.05 mm |
T_PET | 0.10 mm |
A_L1 | 0.7 mm |
A_W | 0.2 mm |
A_G | 3.0 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, Y.; Moon, I.; Cho, J.; Lee, Y.; Jang, J.; Shohei, M.; Toshifumi, K.; Kahng, S. An On-Film AMC Antenna Insert-Molded in Earbuds with Enhancement in In-Ear and In Situ Received-Signal Sensing. Sensors 2022, 22, 4523. https://doi.org/10.3390/s22124523
Seo Y, Moon I, Cho J, Lee Y, Jang J, Shohei M, Toshifumi K, Kahng S. An On-Film AMC Antenna Insert-Molded in Earbuds with Enhancement in In-Ear and In Situ Received-Signal Sensing. Sensors. 2022; 22(12):4523. https://doi.org/10.3390/s22124523
Chicago/Turabian StyleSeo, Yejune, Inyeol Moon, Junghyun Cho, Yejin Lee, Jiyeon Jang, Morimoto Shohei, Kurosaki Toshifumi, and Sungtek Kahng. 2022. "An On-Film AMC Antenna Insert-Molded in Earbuds with Enhancement in In-Ear and In Situ Received-Signal Sensing" Sensors 22, no. 12: 4523. https://doi.org/10.3390/s22124523
APA StyleSeo, Y., Moon, I., Cho, J., Lee, Y., Jang, J., Shohei, M., Toshifumi, K., & Kahng, S. (2022). An On-Film AMC Antenna Insert-Molded in Earbuds with Enhancement in In-Ear and In Situ Received-Signal Sensing. Sensors, 22(12), 4523. https://doi.org/10.3390/s22124523