Cladding Mode Fitting-Assisted Automatic Refractive Index Demodulation Optical Fiber Sensor Probe Based on Tilted Fiber Bragg Grating and SPR
<p>(<b>a</b>) Schematic set-up of the TFBG-SPR sensor probe for the SRI measurement in glucose aqueous solutions, and 1, 2 and 3 represent the port number of the circulator; (<b>b</b>) P-polarized reflected spectrum of the TFBG-SPR sensor probe in the glucose aqueous solution with a SRI of ~1.3573.</p> "> Figure 2
<p>Real experimental set-up for SRI sensing.</p> "> Figure 3
<p>Schematic of SRI demodulation algorithm.</p> "> Figure 4
<p>Loops of 11 continuous wavelengths around the peak ~1540.6 nm in the initial glucose aqueous solution with a SRI of ~1.3573.</p> "> Figure 5
<p>Max-peaks and min-peaks with serial numbers, such as 1, 2, 3, etc., in the initial glucose aqueous solution with a SRI of ~1.3573.</p> "> Figure 6
<p>Spectra adjacent to the SPR signature in different glucose aqueous solutions (refractive index ~1.3573) with a SRI change of 8.8 × 10<sup>−5</sup>; inset: zoomed-in spectra of the most sensitive cladding mode No. 10.</p> "> Figure 7
<p>Linear regressions of the amplitudes of the cladding modes No. 7–No. 12 in different glucose aqueous solutions (refractive index ~1.3573) with a SRI change of 8.8 × 10<sup>−5</sup>.</p> "> Figure 8
<p>Transmitted amplitude spectra of the cladding mode No. 10 (<b>a</b>) and linear fit of the cladding mode amplitude (<b>b</b>) with three original data and parabola calculated based on these data, respectively, in different glucose aqueous solutions (refractive index ~1.3573).</p> "> Figure 9
<p>Amplitude of the cladding mode No. 10 after Gauss fitting in terms of SRI change 8.8 ×10<sup>−5</sup> for wavelength resolution 0.07 nm (unweighted (<b>a</b>) and weighted (<b>b</b>)).</p> "> Figure 10
<p>Amplitude of the cladding mode No. 10 after Gauss fitting in terms of SRI change 8.8 × 10<sup>−5</sup> for wavelength resolution 0.14 nm (unweighted (<b>a</b>) and weighted (<b>b</b>)).</p> "> Figure 11
<p>Linear regression of the average cladding mode amplitude obtained by unweighted and weighted Gauss fitting in terms of SRI change 8.8 × 10<sup>−5</sup> for the wavelength resolution 0.07 nm.</p> "> Figure 12
<p>Linear regression of the cladding mode amplitude obtained by 5-data unweighted and weighted Gauss fitting in terms of SRI change 8.8 × 10<sup>−5</sup> for the wavelength resolution 0.14 nm.</p> "> Figure 13
<p>Transmitted spectra of the cladding mode No. 10 with weighted (<b>a</b>) and unweighted (<b>b</b>) Gauss fitting in terms of SRI change 8.8 × 10<sup>−5</sup> for the wavelength resolution 0.14 nm.</p> ">
Abstract
:1. Introduction
2. Experiment
2.1. Fabrication of TFBG-SPR Sensor Probe
2.2. SRI Measurement in Glucose Aqueous Solutions
3. SRI Demodulation Method
3.1. Peak Identification and Cladding Mode Selection
3.2. Selection of the Most Sensitive Cladding Mode
3.3. Cladding Mode Fitting for Efficiency and Sensitivity Improvement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Jiao, L.; Zhong, N.; Zhao, X.; Ma, S.; Fu, X.; Dong, D. Recent advances in fiber-optic evanescent wave sensors for monitoring organic and inorganic pollutants in water. Trends Anal. Chem. 2020, 127, 115–892. [Google Scholar] [CrossRef]
- Guo, T.; González-Vila, Á.; Loyez, M.; Caucheteur, C. Plasmonic optical fiber-grating immunosensing: A review. Sensors 2017, 17, 2732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdogan, T.; Sipe, J.E. Tilted fiber phase gratings. J. Opt. Soc. Am. A 1996, 13, 296–313. [Google Scholar] [CrossRef]
- Hu, X.; Pun, C.-F.J.; Tam, H.-Y.; Mégret, P.; Caucheteur, C. Tilted Bragg gratings in step-index polymer optical fiber. Opt. Lett. 2014, 39, 6835–6838. [Google Scholar] [CrossRef]
- Chan, C.; Chen, C.; Jafari, A.; Laronche, A.; Thomson, D.J.; Albert, J. Optical fiber refractometer using narrowband cladding-mode resonance shifts. Appl. Opt. 2007, 46, 1142–1149. [Google Scholar] [CrossRef]
- Zhou, W.; Zhou, Y.; Albert, J. A true fiber optic refractometer. Laser Photonics Rev. 2017, 11, 1600157. [Google Scholar] [CrossRef]
- Pham, X.; Si, J.; Chen, T.; Wang, R.; Yan, L.; Cao, H.; Hou, X. Demodulation method for tilted fiber Bragg grating refractometer with high sensitivity. J. Appl. Phys. 2018, 123, 174501. [Google Scholar] [CrossRef] [Green Version]
- Tomyshev, K.A.; Manuilovich, E.S.; Tazhetdinova, D.K.; Dolzhenko, E.I.; Butov, O.V. High-precision data analysis for TFBG-assisted refractometer. Sens. Actuators A Phys. 2020, 308, 112016. [Google Scholar] [CrossRef]
- Caucheteur, C.; Shevchenko, Y.; Shao, L.; Wuilpart, M.; Albert, J. High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement. Opt. Express 2011, 19, 1656–1664. [Google Scholar] [CrossRef] [Green Version]
- Caucheteur, C.; Voisin, V.; Albert, J. Polarized spectral combs probe optical fiber surface plasmons. Opt. Express 2013, 21, 3055–3066. [Google Scholar] [CrossRef] [Green Version]
- Loyez, M.; Hassan, E.M.; Lobry, M.; Liu, F.; Caucheteur, C.; Wattiez, R.; DeRosa, M.C.; Willmore, W.G.; Albert, J. Rapid Detection of Circulating Breast Cancer Cells Using a Multiresonant Optical Fiber Aptasensor with Plasmonic Amplification. ACS Sens. 2020, 5, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Caucheteur, C.; Guo, T.; Liu, F.; Guan, B.-O.; Albert, J. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs. Nat. Commun. 2016, 7, 13371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobry, M.; Loyez, M.; Chah, K.; Hassan, E.M.; Goormaghtigh, E.; DeRosa, M.C.; Wattiez, R.; Caucheteur, C. HER2 biosensing through SPR-envelope tracking in plasmonic optical fiber gratings. Biomed. Opt. Express 2020, 11, 4862–4871. [Google Scholar] [CrossRef] [PubMed]
- Leitão, C.; Pereira, S.O.; Alberto, N.; Lobry, M.; Loyez, M.; Costa, F.M.; Pinto, J.L.; Caucheteur, C.; Marques, C. Cortisol In-Fiber Ultrasensitive Plasmonic Immunosensing. IEEE Sens. J. 2021, 21, 3028–3034. [Google Scholar] [CrossRef]
- Manuylovich, E.; Tomyshev, K.; Butov, O.V. Method for Determining the Plasmon Resonance Wavelength in Fiber Sensors Based on Tilted Fiber Bragg Gratings. Sensors 2019, 19, 4245. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Du, F.; Guo, T.; Lao, J.; Zhang, X.; Zhang, Z.; Liu, F.; Li, J.; Chen, C.; Guan, B.-O. Liquid Crystal-Embedded Tilted Fiber Grating Electric Field Intensity Sensor. J. Lightwave Technol. 2017, 35, 3347–3353. [Google Scholar] [CrossRef]
- Chen, X.; Xu, J.; Zhang, X.; Guo, T.; Guan, B.-O. Wide Range Refractive Index Measurement Using a Multi-Angle Tilted Fiber Bragg Grating. IEEE Photon. Technol. Lett. 2017, 29, 719–722. [Google Scholar] [CrossRef]
- Hu, X.; Mégret, P.; Caucheteur, C. Surface plasmon excitation at near-infrared wavelengths in polymer optical fibers. Opt. Lett. 2015, 40, 3998–4001. [Google Scholar] [CrossRef]
- Loyez, M.; Larrieu, J.-C.; Chevineau, S.; Remmelink, M.; Leduc, D.; Bondue, B.; Lambert, P.; Deviere, J.; Wattiez, R.; Caucheteur, C. In situ cancer diagnosis through online plasmonics. Biosens. Bioelectron. 2019, 131, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; He, Z.; Yu, W. Comparison of public peak detection algorithms for MALDI mass spec trometry data analysis. BMC Bioinform. 2009, 10, 4. [Google Scholar] [CrossRef] [Green Version]
- Xu, O.; Liu, J.; Tong, X.; Zhang, C.; Deng, C.; Mao, Y.; Yin, R.; Jin, C.; Fang, D. A multi-peak detection algorithm for Fiber Bragg Grating sensing systems. Opt. Fiber Technol. 2020, 58, 102311. [Google Scholar] [CrossRef]
- Zhao, K.; Li, Y.; Wang, G.; Pu, Y.; Lian, Y. A robust QRS detection and accurate R-peak identification algorithm for wearable ECG sensors. Sci. China Inf. Sci. 2021, 64, 182401. [Google Scholar] [CrossRef]
- Yang, D.; Chen, W.; Wan, F.; Zhou, Y.; Wang, J. Identification of the Aging Stage of Transformer Oil-Paper Insulation via Raman Spectroscopic Characteristics. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1770–1777. [Google Scholar] [CrossRef]
- Seryasat, O.R.; Kor, I.; Zadeh, H.G.; Taleghani, A.S. Predicting the number of comments on Facebook posts using an ensemble regression model. Int. J. Nonlinear Anal. Appl. 2021, 12, 49–62. [Google Scholar]
- Ong, P.; Chen, S.; Tsai, C.-Y.; Chuang, Y.-K. Prediction of tea theanine content using near-infrared spectroscopy and flower pollination algorithm. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 255, 119657. [Google Scholar] [CrossRef]
- Francis, B.; Lane, S.; Pirmohamed, M.; Jorgensen, A. A review of a priori regression models for warfarin maintenance dose prediction. PLoS ONE 2014, 9, 114896. [Google Scholar] [CrossRef]
- Kim, S.; Kano, M.; Nakagawa, H.; Hasebe, S. Estimation of active pharmaceutical ingredients content using locally weighted partial least squares and statistical wavelength selection. Int. J. Pharm. 2011, 421, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Wang, Y.; Yang, C.; Gui, W.; Ye, L. Probabilistic density-based regression model for soft sensing of nonlinear industrial processes. J. Process Control 2017, 57, 15–25. [Google Scholar] [CrossRef]
- Liu, K.; Shao, W.; Chen, G. Autoencoder-based nonlinear Bayesian locally weighted regression for soft sensor development. ISA Trans. 2020, 103, 143–155. [Google Scholar] [CrossRef]
Wavelength Resolution | Original Data | Parabolic Equation | Unweighted Gauss Fit | Weighted Gauss Fit | |
---|---|---|---|---|---|
0.07 nm | Slope (dB/RIU) | −5685 | −6332 | −6307 | −6721 |
(%) | 99.9 | 99.7 | 97.4 | 99.5 | |
0.14 nm | Slope (dB/RIU) | −5415 | −5850 | −4851 | −6228 |
(%) | 99.3 | 99.5 | 98.7 | 99.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.; Huang, W.; Liu, Y.; Chen, X.; Qu, H.; Hu, X. Cladding Mode Fitting-Assisted Automatic Refractive Index Demodulation Optical Fiber Sensor Probe Based on Tilted Fiber Bragg Grating and SPR. Sensors 2022, 22, 3032. https://doi.org/10.3390/s22083032
Lin W, Huang W, Liu Y, Chen X, Qu H, Hu X. Cladding Mode Fitting-Assisted Automatic Refractive Index Demodulation Optical Fiber Sensor Probe Based on Tilted Fiber Bragg Grating and SPR. Sensors. 2022; 22(8):3032. https://doi.org/10.3390/s22083032
Chicago/Turabian StyleLin, Wenwei, Weiying Huang, Yingying Liu, Xiaoyong Chen, Hang Qu, and Xuehao Hu. 2022. "Cladding Mode Fitting-Assisted Automatic Refractive Index Demodulation Optical Fiber Sensor Probe Based on Tilted Fiber Bragg Grating and SPR" Sensors 22, no. 8: 3032. https://doi.org/10.3390/s22083032
APA StyleLin, W., Huang, W., Liu, Y., Chen, X., Qu, H., & Hu, X. (2022). Cladding Mode Fitting-Assisted Automatic Refractive Index Demodulation Optical Fiber Sensor Probe Based on Tilted Fiber Bragg Grating and SPR. Sensors, 22(8), 3032. https://doi.org/10.3390/s22083032