Advances in Optical Sensors for Persistent Organic Pollutant Environmental Monitoring
<p>Sensing system based on the fluorescence quenching of UCNPs@COFs by PFOS in the presence of SDBS. Reprinted from [<a href="#B16-sensors-22-02649" class="html-bibr">16</a>].</p> "> Figure 2
<p>Schematic illustration of the upconversion molecular imprinted ratiometric probe. Reprinted from [<a href="#B18-sensors-22-02649" class="html-bibr">18</a>].</p> "> Figure 3
<p>Illustration of the absorption and magnetic separation procedure of PFOS and PFOA by the MNP@GC5A-12C nanoparticle. Reported from [<a href="#B19-sensors-22-02649" class="html-bibr">19</a>].</p> "> Figure 4
<p>The (<b>a</b>) chemical structure and (<b>b</b>) the schematic representation of the development of BC as a fluorescence sensor for PFOS detection. Reported from [<a href="#B20-sensors-22-02649" class="html-bibr">20</a>].</p> "> Figure 5
<p>Representation of the structures of the main PAHs.</p> "> Figure 6
<p>Schematic representation of ZnO QDs interaction (<b>a</b>) Aldrin and (<b>b</b>) Glyphosate. Reported from [<a href="#B30-sensors-22-02649" class="html-bibr">30</a>].</p> "> Figure 7
<p>Schematic representation of PLNPs, adopted from [<a href="#B31-sensors-22-02649" class="html-bibr">31</a>].</p> "> Figure 8
<p>Schematic representation of PDI based sensors, adopted from [<a href="#B32-sensors-22-02649" class="html-bibr">32</a>].</p> "> Figure 9
<p>(<b>a</b>) Colorimetric sensing detection of PFOS; (<b>b</b>) UV–Vis absorbance variation at 652 nm with increasing concentrations of PFOS. Reported from [<a href="#B36-sensors-22-02649" class="html-bibr">36</a>].</p> "> Figure 10
<p>(<b>a</b>) The portable instrument setup, with the sample holder and the fixed LEDs. (<b>b</b>) The holder keeping the smartphone in a reading position. Reported from [<a href="#B37-sensors-22-02649" class="html-bibr">37</a>].</p> "> Figure 11
<p>Illustration of the sensing mechanism for PFOS detection based on a TB receptor.</p> "> Figure 12
<p>Schematic procedure of sensor assembly and BaP detection. Adopted from [<a href="#B50-sensors-22-02649" class="html-bibr">50</a>].</p> "> Figure 13
<p>(<b>a</b>) Molecular structure of 4-(1-Hydroxy-2-((4-(4-hydroxyphenyl)butan-2-yl)amino) ethyl)phenol (Ractopamine). (<b>b</b>) Molecular structure of Benzyl butyl benzene-1,2-dicarboxylate (BBP).</p> "> Figure 14
<p>(<b>a</b>) Scheme of the colorimetric aptasensor for detection of PCB. The aptamers were absorbed on the nanoparticles. Then, the addition of PCB and the binding with the aptamer induced the aggregation of AuNPS and changed the color of the solution from red to blue. (<b>b</b>) Representation of the fluorescent aptasensor for PCB detection with the development of a dual amplification strategy [<a href="#B83-sensors-22-02649" class="html-bibr">83</a>].</p> "> Figure 15
<p>The schematic structure of an aptamer-based LC biosensor for PCB. After the binding with the target, the structure of THMS is disassembled, and the STP binds STP’ on the LP cell with a change of optical response, from dark to bright. Reported from [<a href="#B84-sensors-22-02649" class="html-bibr">84</a>].</p> "> Figure 16
<p>(<b>A</b>) Optical biosensor system based on the POF–SPR platform. (<b>B</b>) Functionalization process of the gold surface. (<b>C</b>) Resonance spectra acquired in buffer solution obtained before and after the functionalization process with msAb anti-PFOA. Both measurements were obtained by dropping 50 μL of 20 sodium phosphate buffer pH 7.4 over the sensing surface, with and without the receptor layer. Reprinted from [<a href="#B92-sensors-22-02649" class="html-bibr">92</a>].</p> "> Figure 17
<p>(<b>A</b>) Production steps for realizing an SPR sensor in a D-shaped POF with an MIP receptor; 1, 2, 3 correspond to the production steps. (<b>B</b>) SPR spectra obtained at different concentrations of PFOA in water solution (0–4 ppb) by an SPR–POF–MIP sensor. Inset: zoom of the resonance wavelengths. Reprinted from [<a href="#B102-sensors-22-02649" class="html-bibr">102</a>].</p> "> Figure 18
<p>(<b>a</b>) Selectivity study of the CuNCs-based sensor. The concentration of DTCs and other pesticides is 50 and 125 mg/kg, respectively. (<b>b</b>) The discrimination of four DTCs by using hierarchical clustering. Image is rearranged from Figures 3b and 4 of [<a href="#B108-sensors-22-02649" class="html-bibr">108</a>].</p> "> Figure 19
<p>(<b>a</b>) Pristine and functionalized QDs. Surface functionalization occurs by the use of thiols bearing a benzene at the antipode. (<b>b</b>) Scheme of ON-OFF protocol utilized to improve the array performances. Three consecutive steps were performed consisting of NACs interaction, addition of a quencher (Q.A.) and finally addition of a masking agent (M.A.) to recover the signal of fluorescence. (<b>c</b>) PLS-DA projection using nine channels (three sensing QDS × three measurement steps). (<b>d</b>) Classification performances after NACs addition (three channels), NACs + Q.A. (six channels), and NACs + Q.A. + M.A. (nine channels). The histograms report both Jackknifed classification accuracy and unknown detection accuracy. Image is rearranged from Figures 1, 5 and 6 of [<a href="#B109-sensors-22-02649" class="html-bibr">109</a>].</p> "> Figure 20
<p>(<b>a</b>) Fluorescence spectra of PCN-224 suspension at λ<sub>ex</sub> 430 nm upon the addition of different PFASs at 2 µg/mL. (<b>b</b>) LDA canonical score plot and (<b>c</b>) HCA plot derived from fluorescence responses of PCN sensor array toward six PFASs at a concentration of 2 µg/mL. Eclipses represent 95% confidence. (<b>d</b>) LDA canonical score plot derived from fluorescence responses of PCN array toward standard (gray) and test (red, blue, and green) mixtures of PFOA and PFDA in surface water. Image is rearranged from Figures 2c, 3b,c and 7a of [<a href="#B110-sensors-22-02649" class="html-bibr">110</a>].</p> "> Figure 21
<p>(<b>a</b>) The process of discrimination pesticides against OPs profenofos and carbamates propoxur, by using a 12-element array. (<b>b</b>) The fluorescence emission mechanism in the original pattern and (<b>c</b>) the pesticide induced fluorescence quenching mechanism in the reaction pattern. Image is rearranged from Scheme 1 of [<a href="#B113-sensors-22-02649" class="html-bibr">113</a>].</p> "> Scheme 1
<p>The structure of the present review on optical chemical sensors for POPs assessment.</p> "> Scheme 2
<p>Schematic representation of the main designs and working mechanisms of fluorescent sensors: (<b>a</b>) “turn-on”, (<b>b</b>) “turn-off”, (<b>c</b>) ratiometric, and (<b>d</b>) the easier system where the receptor is itself fluorescent. Of course, if the recognition unit is fluorescent, an easier sensing system is also exploitable (<b>d</b>).</p> "> Scheme 3
<p>Schematic representation of (<b>a</b>) the Indicator Displacement Assay (IDA) and (<b>b</b>) the Intramolecular Indicator Displacement Assay (IIDA) used in fluorometric sensors.</p> "> Scheme 4
<p>Schematic presentation of direct and reagent mediated FOCSs.</p> ">
Abstract
:1. Introduction
2. Optical Sensors for POPs Assessment
3. Fluorometric Sensors
3.1. PFAS Optical Detection
3.2. Aromatic Toxicant Compounds
3.3. Fungicide and Pesticide Assessment
3.4. Antibiotics Detection with Fluorimetric Optodes
4. Colorimetric and Naked-Eye Sensors for POPs
5. SERS-Based Optical Sensors for POPs
6. Optical Biosensors for POPs
7. Other Types of Optical Sensors for POPs
7.1. Photonic Crystal Sensors
7.2. Fiber Optic Chemical Sensors (FOCS) and Surface Plasmon Resonance (SPR) Sensors
8. Multisensor Systems for Optical Analysis of POPs
9. Conclusions and Future Perspectives
Sensitive Material | Principle | Analyzed Compound | Application | Detection Limit | Concentration Range | Ref. |
---|---|---|---|---|---|---|
Single Fluorimetric and Colorimetric Sensors | ||||||
UCNPs@COFs | Fluorescence quenching | PFOS | Tap water and food packing | 0.15 pM | 0.18 pM–18 nM | [16] |
NCDs | Fluorescence enhancement | PFOS | River and lake water | 0.3 nM | 3 × 10−10–1.6 × 10−8 M | [17] |
UMIR probe | Fluorescence quenching (ratiometric) | PFOS | Lake water, human serum, egg | 1 pM | 0.001–0.1 nM | [18] |
0.1–1 nM | ||||||
GC5A-6C | Fluorescence enhancement | PFOS | Tap water, lake water | 30 nM (PFOS) | 0–2 μM | [19] |
GC5A-12C | PFOA | 39 nM (PFOA) | ||||
BowtieCyclo | Fluorescence enhancement | PFOS | In water | 47.3 nM | 0–0.6 μM | [20] |
Water-soluble copolymers based on thymine | Fluorescence enhancement | PAHs (BaP, Pyr) | Tap, ditch, and river water samples | 0.11 ng/mL (BaP); | 0.0–2.0 ng/mL (BaP) | [23] |
0.06 ng/mL (Pyr) | 0.0–1.25 ng/mL (Pyr) | [24] | ||||
γ cyclodextrin-dye complex | Fluorescence enhancement | PAHs and metabolites | Human breast milk | 0.32–59.52 μM | - | [25] |
Ln-MOF | Fluorescence quenching | Polychlorinated aromatic compounds | - | - | 0–1000 nM | [27] |
BT-CTF | Fluorescence quenching | Primary aromatic amines (PAAs) | - | 11.7 nM (PA); | 3–33 μM | [28] |
1.47 nM (PDA); | ||||||
26.2 nM (NPA) | ||||||
ssDNA/L-cysteine capped ZnS QDs/GO sheets | Fluorescence quenching | Edifenphos (EDI) | In laboratory | 0.13 μg/L | 0.5–6 μg/L | [29] |
ZnO QDs@APTES | Fluorescence quenching | Aldrin, tetradifon, glyphosate, atrazine | In laboratory | - | - | [30] |
PLNPs | Fluorescence quenching | Nitrofurazone | Milk and lake water | 5 nM; 10 nM (TNP) | - | [31] |
PDI derivatives | Fluorescence quenching | Berberine chloride | Commercial medicine | 28 nM | 1.0–30.0 μM | [32] |
PDI derivatives | Fluorescence quenching | Polymyxins B | Meat | 18.5 nM | 1–2000 nM | [21] |
BA–LMOFs@MIP | Fluorescence enhancement (363 nm)/quenching (618 nm) | Ribaverin | Eggs and lake water | 7.62 ng/mL | 25–1200 ng/mL | [34] |
3,3,5,5-tetramethylbenzidine (TMB)/MoS2 -Fe3O4 nanocomposite | Colorimetric (Absorbance) | PFOS | - | 4.3 ppb | 0.05–6.25 ppm | [36] |
Ethyl violet, ethyl acetate | Colorimetric (RGB) | PFOAPFOS | On field—real water samples | 10 ppb (Dual LPE); | 10–1000 ppb | [37] |
0.5 ppb (SPE) | ||||||
Toluidine blue TB | Dual-channel sensor: RRS (Rayleigh scattering) and colorimetric | PFOS | Real water samples | 4.2 (nmol/L) | 0.04–20.0 (μmol/L) | [38] |
α,α,α,α-5,10,15,20-tetra-(2-amido-phenyl-pentadecafluoro-octanoyl)porphyrin | Colorimetric (Absorbance) | PFOA | Spiked soil sample | 3 ppm | 3–30 ppm | [39] |
Surface Enhanced Raman Spectroscopy (SERS) sensors | ||||||
Microporous silica capsule/Au plasmonic films | SERS | DDT | Natural water | - | 1 ppb–3 ppm | [58] |
Ag NPs/non-woven fabric | SERS | several pesticides residues | In fruits | - | - | [59] |
Nanoporous silver sheet | SERS | Organochlorine, as lindane | In laboratory | 87 ppb | 87–364 ppb | [60] |
Au concave Nanocrystals | SERS | Lindane | In laboratory | - | 30–300 ppm | [61] |
MoO2 | SERS | Bisphenol A (BPA), dichloropheno (DCP), pentachlorophenol (PCP) | In laboratory | 10−7 M | 10−7–10−4 M | [62] |
AgNPs modified with organic p -acceptor molecules | SERS | PAH/PASH | In laboratory/fuel samples | Up to 10 × 10−9 M | 0.05 × 10−6–50 × 10−6 M | [63] |
Ag nanocubes/GO/AuNPs | SERS | Thiram, thiabendazole | Drinking-water | 0.37–8.3 ppb | 0.1–10 nM | [64] |
AgNPs | SERS | DBT | In laboratory/ | 10−6 M | 10−5–10−3 M | [65] |
petrol samples | ||||||
AgNPs | SERS | Organochlorine pesticides | In laboratory | 10−5 M | - | [66] |
Au nanosheets/ | SERS | HCH | In laboratory | 0.3 ppb | 10−9 M–10−5 M | [67] |
4-MBPA | ||||||
AuNPs/cysteamine | SERS | PCP | In laboratory | 0.26 mg/L | 1 nM–100 μM | [68] |
AuNPs/HS-b-CD | SERS | anthracene, naphthalene | In laboratory | 1 ppb/10 ppb | 1 ppb–1 ppm | [69] |
AuNPs/DSNB | SERS | benzo[a]pyrene | In laboratory | 2 nM | - | [50] |
AuNPs | SERS | PAHs | In laboratory | 0.45 µg/L (PYR); | 0–100 µg/L | [70] |
0.23 µg/L (PHE); | ||||||
1.38 µg/L (NaP) | ||||||
AgNPs on Al2O3 nanotips | SERS | Ractopamine | Raw pork | 10 µg/L | 1.0 × 10−8–1.0 × 10−4 M | [71] |
Ag@Fe3O4@Ag/β-CD NPs | SERS | BBP | In laboratory/liquor | 1.3 mg/kg | 5 × 10−8–5 × 10−5 M | [72] |
Citrate-coated AuNPs | SERS | Chlordane | In laboratory/ | 1 ppm | 0.5 ppm–10 ppm | [73] |
crude oil | ||||||
AgNpS | SERS | PAHs | In laboratory | 5 ng/L (pyrene) | 0–40 ng/L | [74] |
50 ng/L (benzo[a]pyrene) | ||||||
100 ng/L (anthracene) | ||||||
Au-Ag alloyed nanocrystal/ZIF8 | SERS | HCH | In laboratory | <1.5 ppb | 5 × 10−9–1 × 10−4 M | [75] |
Au-Ag/Si nanoporous—ZIF8 | SERS | PCP | In laboratory | 10−13 M | 10−13–10−7 M | [76] |
Au-MOF-5 | SERS | Paraoxon, fenitrothion | In laboratory | <10−12 M | 10−14–10−6 M | [77] |
Biosensors | ||||||
Aptamers on AuNPs | Colorimetric | PCB 77 | On field—real water samples | 0.05 nM | 0.5–900 nM | [80] |
biosensor | ||||||
Aptamers/cDNA and magnetic microspheres | Fluorescence | PCB72/106 | On field | 0.0035 ng/mL | 0.004–800 ng/mL | [83] |
biosensor | ||||||
(LC)-based aptamer | Color intensity | PCB77 | Food quality assessment | 1.5 × 10−5 μg/L | 1.5 × 10−5–15 μg/L | [84] |
biosensor | ||||||
Genetically engineered CSH cell | Luminescence cell biosensor | PBDEs | In laboratory | 0.01 µM | 0.05–6.0 µM | [88] |
Mono-specific antibodies | SPR–POF biosensor | PFOA/PFOS | In laboratory | 0.21 ppb | 0 -100 ppb | [92] |
Photonic crystal (PhC) sensors | ||||||
Poly(styrene-acrylic acid) and TiO2 NPs | PhC, naked-eye or smartphone detection | Benzene (benz), toluene (tol), xylene (xyl), 1,2,4-trimethylbenzene (TMB) | In laboratory | 1.69 g/m3/410.9 ppm (tol); | 0.0–81.18 g/m3 (tol); | [95] |
5.26 g/m3/1511.5 ppm (benz); | 0.0–300 g/m3 (benz); | |||||
0.47 g/m3/99.2 ppm (xyl); | 0.0–40 g/m3 (xyl); | |||||
0.079 g/m3/14.7 ppm (TMB) | 0.0–14 g/m3 (TMB) | |||||
Silicon slab | Hexagonal structured PhC | DDT and PCB | Drinking water | - | RI–1.5795 (DDT); | [96] |
RI–1.491; (PCB) | ||||||
Surface plasmon resonance (SPR) sensors onPlastic optical fibers (POFs) and Photonic crystal fibers (PCF) | ||||||
SPR–POF-MIP | SPR | PFOA; PFOS; mixture of 11 perfluorinated alkylated substances (PFAs, C4–C11 range) | In water | 0.13 ppb (PFOA); | 0–4 ppb | [102] |
0.15 ppb (PFAs) | ||||||
D-shaped POF-SPR | SPR | PFOA | In water | 0.5 ppb | 0–200 ppb | [103] |
Dual- channel solid silica/Au external coating | PCF-SPR | Compounds with | In laboratory | - | - | [104] |
RI 1.30–1.40 | ||||||
Au/TiO2 thin film on glass | PCF | Compounds with | In laboratory | - | - | [105] |
I 1.33–1.41 | ||||||
Multisensor systems | ||||||
CTAB encapsulated Cu NCs | Fluorescence quenching | Dithiocarbamates (DTCs) | On field | 0.63 mg/L | 1–100 mg/L | [108] |
Sensitivity 1.158 mg/L | ||||||
Fluorescent QDs | Fluorescence | NACs—nitroaromatic compounds | - | - | Classification: 13 NAC (0.1 mM) | [109] |
Optical filter | ||||||
LMOFs | Luminescence quenching | PFASs | - | - | Classification: 6 PFASs, (2 µg/mL) | [110] |
CD + PVA | Luminescence | PAHs | 0–200 μM | Classification: 16 PAHs (10 μM) | [111] | |
Inner filter | ||||||
Conjugated polymers (CPs) | Fluorescence | Azo dyes | - | - | Classification:12 azo dyes (500 nM) in river—wastewaters6 azo dyes (15 μM) in seawater | [112] |
Inner filter | ||||||
Acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) | Fluorescence | Organophosphourus (OPs) and carbamate pesticides | - | 0–5 ppm | Classification: 30 OPs and carbamate up to concentrations equal to 0.2 ppm | [113] |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
4-MBPA | 4-mercaptophenylboronic acid |
AIE | aggregation-induced emission |
Ala | alanine |
ANHCs | Au nanosheets-built hollow sub-microcubes |
APTES | 3-aminopropyltrimethoxysilane |
Asp | aspartic acid |
BA-LMOFs | boric acid-functionalized lanthanide metal organic frameworks |
BaP | benzo[a]pyrene |
BBC | berberine chloride |
BBP | benzyl butyl phthalate |
BC | BowtieCyclo |
BPA | bisphenol A |
BT | benzothiadiazole |
CA | cluster analysis |
CDs | carbon dots |
ChE | cholinesterase |
CHS | cell surface hydrophobicity |
COFs | covalent organic frameworks |
CPs | conjugated polymers |
CTCs | charge–transfer complexes |
CTF | covalent triazine framework |
Cys A | cysteine A |
DBT | dibenzothiophene |
DCP | dichlorophenol |
DDQ | 2,3-dichloro-5,6-dicyano-1,4-benzoquinone |
DDT | dichloride diphenyl trichloroethane |
DFT | density functional theory calculations |
DMF | N,N-dimethylformamide |
DSNB | (5,5 -dithiobis(succinimidyl-2-nitrobenzoate) |
DTCs | dithiocarbamates |
EDI | edifenphos |
EDMA | ethylene glycol dimethacrylate |
FOCS | fiber optic chemical sensors |
FPO-NH4 | ammonium perfluorooctanoate |
FRET | fluorescence resonance energy transfer |
Glu | glutamic acid |
GO | graphene oxide |
HCA | hierarchical cluster analysis |
HCH | hexachlorocyclohexane |
HCR | hybridization chain reaction |
HS-b-CD | mono-6-thio-b-cyclodextrin |
ICT | intramolecular charge transfer |
IDA | indicator displacement assay |
IFE | inner field effect |
IIDA | intramolecular indicator displacement |
LC | liquid crystal |
LDA | linear discriminant analysis |
LLE | liquid–liquid extraction |
LOD | limit of detection |
MIP | molecularly imprinted polymer |
MMPs | magnetic microspheres |
MNP | iron oxide nanoparticle |
MOFs | metal-organic-frameworks |
MQD | MoS2 quantum dots |
NACs | nitroaromatic compounds |
NCDs | nitrogen-doped carbon dots |
NIP | non-imprinted polymer |
NpAg | nanoporous silver |
OPs | organophosphorus compounds |
PAAs | primary aromatic amines |
PAHs | (polycyclic aromatic compounds) |
PARAFAC | parallel factor analysis |
PASHs | (polycyclic aromatic sulfur-containing hydrocarbons) |
PBDES | polybrominated diphenyl ethers |
PCA | principal component analysis |
PCB | polychlorinated biphenyls |
PCF | photonic crystal fiber |
PCP | pentachlorophenol |
PDI | perylene diimide |
PET | photo-induced electron transfer |
PFAS | poly-fluoroalkyl compounds |
PFCs | perfluorinated compounds |
PFDA | 1H,1H,2H,2H-perfluorodecyl acrylate |
PFOA | perfluorooctanoic acid |
PFOS | perfluorooctanesulfonic acid |
PhC | photonic crystal |
Phe | phenanthrene |
PL | photoluminescence |
PLNPs | persistent luminescence nanoparticles |
PMB | polymyxins B |
PMMA | poly(methyl methacrylate) |
POPs | persistent organic compounds |
Pyr | pyrene |
QDs | quantum dots |
RBV | ribaverin |
RI | refractive index |
SDBS | sodium dodecyl benzene sulfonate |
SEM | scanning electron microscopy |
SERS | Surface Enhanced Raman Spectroscopy |
SLE | solid–liquid extraction |
SPP | surface plasmon polariton |
SPR–POF | surface plasmon resonance optical fiber |
SPR | surface plasmon resonance |
TCB | trichlorobenzene |
TCh | thiocholine |
TCP | trichlorophenol |
TCPP | tetrakis(4-carboxyphenyl)porphyrin |
TEM | transmission electron microscopy |
THMS | triple helix molecular switch |
TMB | 1,2,4-trimethylbenzene |
TNP | 2,4,6-trinitrophenol |
TPE | tetra phenylethylene |
UANNs | urchin-like Au-Ag alloyed nanocrystal |
UCNPs | upconversion nanoparticles |
VBT | (vinylbenzyl)trimethylammonium chloride |
VOCs | volatile organic compounds |
WQD | WS2 quantum dots |
ZIF-8 | zeolite imidazole framework |
ZnO | zinc oxide |
References
- Stockholm Convention on Persistent Organic Pollutants (POPs). Available online: http://chm.pops.int/TheConvention/Overview/TextoftheConvention/tabid/2232/Default.aspx (accessed on 31 January 2022).
- Tang, H.P. Recent development in analysis of persistent organic pollutants under the Stockholm Convention. TrAC Trends Anal. Chem. 2013, 45, 48–66. [Google Scholar] [CrossRef]
- Erickson, B.E. Linking pollution and infectious disease. Chem. Eng. News 2019, 97, 28–33. [Google Scholar]
- Official Journal of the European Union 169/45, 2019, p. 45. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2019.169.01.0045.01.ENG&toc=OJ%3AL%3A2019%3A169%3AFULL (accessed on 31 January 2022).
- Lvova, L.; Di Natale, C.; Paolesse, R. Chemical sensors for water potability assessment. In Bottled and Packaged Water; Grumezescu, A.M., Holban, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 177–208. [Google Scholar]
- Hulanichi, A.; Geab, S.; Ingman, F. Chemical sensors definitions and classifications. Pure. Appl. Chem. 1991, 63, 1247. [Google Scholar] [CrossRef]
- McDonagh, C.; Burke, C.S.; MacCraith, B.D. Optical Chemical Sensors. Chem. Rev. 2008, 108, 400–422. [Google Scholar] [CrossRef] [PubMed]
- Lvova, L.; Di Natale, C.; Paolesse, R. Hybrid and optical multisensory systems for liquid analysis: Theoretical basis, trends and applications. In Electronic Tongues Fundamentals and Recent Advances; Shimizu, F.M., Braunger, M.L., Riul, A., Jr., Eds.; IOP Publishing Ltd.: Bristol, UK, 2021; pp. 9–51. [Google Scholar] [CrossRef]
- Wang, L.; Pang, S.; Zhou, G. Recent Advances in Spectroscopy Technology for Trace Analysis of Persistent Organic Pollutants. Appl. Sci. 2019, 9, 3439. [Google Scholar] [CrossRef] [Green Version]
- Patrizi, B.; Siciliani de Cumis, M.; Viciani, S.; D’Amato, F. Dioxin and Related Compound Detection: Perspectives for Optical Monitoring. Int. J. Mol. Sci. 2019, 20, 2671. [Google Scholar] [CrossRef] [Green Version]
- Moldovan, R.; Iacob, B.C.; Farcau, C.; Bodoki, E.; Oprean, R. Strategies for SERS Detection of Organochlorine Pesticides. Nanomaterials 2021, 11, 304. [Google Scholar] [CrossRef]
- Guo, W.; Pan, B.; Sakkiah, S.; Yavas, G.; Ge, W.; Zou, W.; Tong, W.; Hong, H. Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. Int. J. Environ. Res. Public Health 2019, 16, 4361. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Sedgwick, A.C.; Hirao, T.; Sessler, J.L. Supramolecular fluorescent sensors: An historical overview and update. Coord. Chem. Rev. 2021, 427, 213560. [Google Scholar] [CrossRef]
- Fukuhara, G. Analytical supramolecular chemistry: Colorimetric and fluorimetric chemosensors. J. Photochem. Photobiol. C Photochem. Rev. 2020, 42, 100340. [Google Scholar] [CrossRef]
- Wang, Z.; DeWitt, J.C.; Higgins, C.P.; Cousins, I.T. A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)? Environ. Sci. Technol. 2017, 51, 2508–2518. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, C.; Yin, M.; Zhang, Z.; Chen, Y.; Deng, Q.; Wang, S. Surfactant-Sensitized Covalent Organic Frameworks-Functionalized Lanthanide-Doped Nanocrystals: An Ultrasensitive Sensing Platform for Perfluorooctane Sulfonate. ACS Omega 2019, 4, 15947–15955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, L.; Zhou, S.; Guo, H.; Chen, Y.; Lin, S.; Yan, L.; Li, K.; Li, J. Nitrogen-doped Carbon Dots as an Effective Fluorescence Enhancing System for the Determination of Perfluorooctyl Sulfonate. Microchim. Acta 2019, 186, 380. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Guo, H.; Li, J.; Yan, L.; Zhu, E.; Liu, X.; Li, K. Fabrication of Near-Infrared Excitation Surface Molecular Imprinting Ratiometric Fluorescent Probe for Sensitive and Rapid Detecting Perfuorooctane Sulfonate in Complex Matrix. J. Hazard. Mater. 2021, 413, 125353. [Google Scholar] [CrossRef]
- Zheng, Z.; Yu, H.; Geng, W.-C.; Hu, X.-Y.; Li, Z.; Wang, Y.; Guo, D.-S. Guanidinocalix[5]arene for sensitive fluorescence detection and magnetic removal of perfluorinated pollutants. Nat. Commun. 2019, 10, 5762. [Google Scholar] [CrossRef]
- Lei, S.-N.; Cong, H. Fluorescence detection of perfluooctane sulfonate in water employing a tetraphenylethylene-derived dual macrocycle BowtieCyclophane. Chin. Chem. Lett. 2021, 10, 12189–12216. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Y.; Wu, Y.; Jiang, Y.; Wang, Q.; Lin, X.; Song, G.; Huang, K.; Yao, Z. An efficient approach for rapid detection of polymyxins B based on the optically active supramolecular aggregates of water-soluble perylene diimide. Sens. Actuators B 2020, 321, 128594. [Google Scholar] [CrossRef]
- Chen, S.-C.; Liao, C.-M. Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Sci. Total Environ. 2006, 366, 112–123. [Google Scholar] [CrossRef]
- Ledesma, J.; Pisano, P.L.; Martino, D.M.; Boschetti, C.E.; Bortolato, S.A. Thymine based copolymers: Feasible sensors for the detection of persistent organic pollutants in water. RSC Adv. 2017, 7, 49066. [Google Scholar] [CrossRef] [Green Version]
- Ledesma, J.; Boschetti, C.E.; Martino, D.M.; Bortolato, S.A. Application of thymine-based copolymers in the quantification of organic pollutants in water by sensitized fluorescence. Microchem. J. 2020, 155, 104625. [Google Scholar] [CrossRef]
- DiScenza, D.J.; Lynch, J.; Verderame, M.; Serio, N.; Prignano, L.; Gareau, L.; Levine, M. Efficient fluorescence detection of aromatic toxicants and toxicant metabolites in human breast milk. Supramol. Chem. 2017, 30, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Guo, Z.; Li, Y.; Nizzetto, L.; Ma, C.; Chen, Y. Air−Seawater Exchange of Organochlorine Pesticides along the Sediment Plume of a Large Contaminated River. Environ. Sci. Technol. 2015, 49, 5354–5362. [Google Scholar] [CrossRef]
- Wang, L.; Fan, G.; Xu, X.; Chen, D.; Wand, L.; Shi, W.; Cheng, P. Detection of polychlorinated benzenes (persistent organic pollutants) by a luminescent sensor based on a lanthanide metal–organic framework. J. Mater. Chem. A 2017, 5, 5541–5549. [Google Scholar] [CrossRef]
- Tang, Y.; Huang, H.; Peng, B.; Chang, Y.; Li, Y.; Zhong, C. A thiadiazole-based covalent triazine framework nanosheet for highly selective and sensitive primary aromatic amine detection among various amines. J. Mater. Chem. A 2020, 8, 16542–16550. [Google Scholar] [CrossRef]
- Arvand, M.; Mirroshandel, A.A. Highly-sensitive aptasensor based on fluorescence resonance energy transfer between l-cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide. Biosens. Bioelectron. 2017, 96, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, D.; Mandal, A.; Mitra, T.; Chakraborty, K.; Bardhan, M.; Dasgupta, A.K. Nanosensing of Pesticides by Zinc Oxide Quantum Dot: An Optical and Electrochemical Approach for the Detection of Pesticides in Water. J. Agric. Food Chem. 2018, 66, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, N.-Y.; Ruan, Q.; Lu, D.-Q.; Yang, Y.-H.; Hu, R. A labe-free and sensitive photoluminescence sensing platform based on long persistent luminescence nanoparticles for the determination of antibiotics and 2,4,6-trinitrophenol. RSC Adv. 2008, 8, 5714–5720. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhang, Q.; Zhao, Y.; Zhuang, K.; Fan, Y.; Zhang, S.; Zhang, X.; Huang, K.; Yao, Z. A sensitive and selective fluorescent sensor for berberine chloride based on the supramolecular self-assembly of perylene diimide in aqueoue solution. ACS Sustain. Chem. Eng. 2020, 8, 6517–6523. [Google Scholar] [CrossRef]
- Miniero, R.; Iamiceli, A.L.; De Felip, E. Persistent Organic Pollutants. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 9780124095489. [Google Scholar]
- Hu, X.; Guo, Y.; Wang, T.; Liu, C.; Yang, Y.; Fang, G. A selectivity-enhanced ratiometric fluorescence imprinted sensor based on synergistic effect of covalent and non-covalent recognition units for ultrasensitive detection of ribavirin. J. Hazard. Mater. 2022, 421, 126748. [Google Scholar] [CrossRef]
- Ryu, H.; Li, B.; De Guise, S.; McCutcheon, J.; Lei, Y. Recent progress in the detection of emerging contaminants PFASs. J. Hazard. Mater. 2021, 408, 124437. [Google Scholar] [CrossRef]
- Liu, J.; Du, J.; Su, Y.; Zhao, H. A facile solvothermal synthesis of 3D magnetic MoS2/Fe3O4 nanocomposites with enhanced peroxidase-mimicking activity and colorimetric detection of perfluorooctane sulfonate. Microchem. J. 2019, 149, 104019. [Google Scholar] [CrossRef]
- Cheng, F.; Xian, Z.; Zhaomin, D.; Liang, W.; Mallavarapu, M.; Ravi, N. Smartphone app-based/portable sensor for the detection of fluoro-surfactant PFOA. Chemosphere 2018, 191, 381–388. [Google Scholar]
- He, J.; Qiu, P.; Song, J.; Zhang, S.; Bai, Y. A resonance Rayleigh scattering and colorimetric dual-channel sensor for sensitive detection of perfluorooctane sulfonate based on toluidine blue. Anal. Bioanal. Chem. 2020, 412, 5329–5339. [Google Scholar] [CrossRef]
- Chloe, M.T.; Theo, A.E.; Michael, C.B.; Nathan, L.K. Porphyrin-based colorimetric sensing of perfluorooctanoic acid as proof of concept for perfluoroalkyl substance detection. Chem. Commun. 2021, 57, 11649–11652. [Google Scholar]
- Raman, C.V.; Krishnan, K.S. A New Type of Secondary Radiation. Nature 1928, 121, 501–502. [Google Scholar] [CrossRef]
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Kronfeldt, H.-D.; Schmidt, H. Submersible fibre-optic sensor system for coastal monitoring. Sea Technol. 1999, 9, 51–55. [Google Scholar]
- Ding, S.-Y.; You, E.-M.; Tian, Z.-Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076. [Google Scholar] [CrossRef]
- Zengin, A.; Tamer, U.; Caykara, J.T. SERS detection of polyaromatic hydrocarbons on a β-cyclodextrin containing polymer brush. Raman Spectrosc. 2018, 49, 452–461. [Google Scholar] [CrossRef]
- Lopez-Tocon, I.; Otero, J.C.; Arenas, J.F.; Garcia-Ramos, J.V.; Sanchez-Cortes, S. Multicomponent Direct Detection of Polycyclic Aromatic Hydrocarbons by Surface-Enhanced Raman Spectroscopy Using Silver Nanoparticles Functionalized with the Viologen Host Lucigenin. Anal. Chem. 2011, 83, 2518–2525. [Google Scholar] [CrossRef]
- Guerrini, L.; Garcia-Ramos, J.V.; Domingo, C.; Sanchez-Cortes, S. Nanosensors Based on Viologen Functionalized Silver Nanoparticles: Few Molecules Surface-Enhanced Raman Spectroscopy Detection of Polycyclic Aromatic Hydrocarbons in Interparticle Hot Spot. Anal. Chem. 2009, 81, 1418–1425. [Google Scholar] [CrossRef]
- Guerrini, L.; Garcia-Ramos, J.V.; Domingo, C.; Sanchez-Cortes, S. Sensing Polycyclic Aromatic Hydrocarbons with Dithiocarbamate-Functionalized Ag Nanoparticles by Surface-Enhanced Raman Scattering. Anal. Chem. 2009, 81, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.H.; Sowoidnich, K.; Schmidt, H.; Kronfeldt, J.H.D. Application of calixarene to high active surface-enhanced Raman scattering (SERS) substrates suitable for in situ detection of polycyclic aromatic hydrocarbons (PAHs) in seawater. Raman Spectrosc. 2012, 43, 1003–1009. [Google Scholar] [CrossRef]
- Qu, L.L.; Li, Y.T.; Li, D.W.; Xue, J.Q.; Fossey, J.S.; Long, Y.T. Humic acids-based one-step fabrication of SERS substrates for detection of polycyclic aromatic hydrocarbons. Analyst 2013, 138, 1523–1528. [Google Scholar] [CrossRef]
- Dribek, M.; Rinnert, E.; Colas, F.; Crassous, M.P.; Thioune, N.; David, C.; de la Chapelle, M.; Compère, C. Organometallic nanoprobe to enhance optical response on the polycyclic aromatic hydrocarbon benzo[a]pyrene immunoassay using SERS technology. Environ. Sci. Pollut. Res. 2017, 24, 27070–27076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, L.; Zhang, M.; Liu, Z.; Bian, W.; Zhang, X.; Zhan, J. Hydrophobic silver nanowire membrane for swabbing extraction and in situ SERS detection of polycyclic aromatic hydrocarbons on toys. Anal. Methods 2017, 9, 1816–1824. [Google Scholar] [CrossRef]
- Jia, S.J.; Li, D.; Fodjo, E.K.; Xu, H.; Deng, W.; Wu, Y.; Wang, Y.H. Simultaneous preconcentration and ultrasensitive on-site SERS detection of polycyclic aromatic hydrocarbons in seawater using hexanethiol-modified silver decorated graphene nanomaterials. Anal. Methods 2016, 8, 7587–7596. [Google Scholar] [CrossRef]
- Li, L.; Hutter, T.; Steiner, U.; Mahajan, S. Single molecule SERS and detection of biomolecules with a single gold nanoparticle on a mirror junction. Analyst 2013, 138, 4574–4578. [Google Scholar] [CrossRef]
- Mosier-Boss, P.A. Review of SERS Substrates for Chemical Sensing. Nanomater 2017, 7, 142. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Wang, X.; Han, X.; Xue, X.; Ji, W.; Qi, Z.; Liu, J.; Zhao, B.; Ozaki, Y. Sensing of polycyclic aromatic hydrocarbons with cyclodextrin inclusion complexes on silver nanoparticles by surface-enhanced Raman scattering. Analyst 2010, 135, 1389–1394. [Google Scholar] [CrossRef]
- Du, J.; Jing, C. Preparation of Thiol Modified Fe3O4@Ag Magnetic SERS Probe for PAHs Detection and Identification. J. Phys. Chem. C 2011, 115, 17829–17835. [Google Scholar] [CrossRef]
- Gu, H.X.; Xue, L.; Zhang, Y.F.; Li, D.W.; Long, Y.T. Facile fabrication of a silver dendrite-integrated chip for surface-enhanced Raman scattering. ACS Appl. Mater. Interfaces 2015, 7, 2931–2936. [Google Scholar] [CrossRef]
- Mariño-Lopez, A.; Sousa-Castillo, A.; Blanco-Formoso, M.; Furini, L.N.; Rodríguez-Lorenzo, L.; Pazos-Perez, N.; Guerrini, L.; Pérez-Lorenzo, M.; Correa-Duarte, M.A.; Alvarez-Puebla, R.A. Microporous plasmonic capsules as stable molecular sieves for direct SERS quantification of small pollutants in natural waters. Chem. Nanomater. Energy Biol. More 2019, 5, 46–50. [Google Scholar] [CrossRef]
- Cai, L.; Deng, Z.; Dong, J.; Song, S.; Wang, Y.; Chen, X. Fabrication of Non-Woven Fabric-Based SERS Substrate for Direct Detection of Pesticide Residues in Fruits. J. Anal. Test. 2017, 1, 322–329. [Google Scholar] [CrossRef]
- Chi, H.; Wang, C.; Wang, Z.; Zhu, H.; Mesias, V.S.D.; Dai, X.; Chen, Q.; Liu, W.; Huang, J. Highly reusable nanoporous silver sheet for sensitive SERS detection of pesticides. Analyst 2020, 145, 5158–5165. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, Q.; Liu, G.; Zhang, H.; Li, Y.; Cai, W. Temperature regulation growth of Au nanocrystals: From concave trisoctahedron to dendritic structures and their ultrasensitive SERS-based detection of lindane. J. Mater. Chem. C 2017, 5, 10399–10405. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, X.; Ma, Q.; Zhang, Q.; Bai, H.; Yi, W.; Liu, J.; Han, J.; Xi, G. A metallic molybdenum dioxide with high stability for surface enhanced Raman spectroscopy. Nat. Commun. 2017, 8, 14903. [Google Scholar] [CrossRef] [Green Version]
- Eremina, O.E.; Sergeeva, E.A.; Ferree, M.V.; Shekhovtsova, T.N.; Goodilin, E.A.; Vaselova, I.A. Dual-Purpose SERS Sensor for Selective Determination of Polycyclic Aromatic Compounds via Electron Donor–Acceptor Traps. ACS Sens. 2021, 6, 1057–1066. [Google Scholar] [CrossRef]
- Zhu, C.; Zhao, Q.; Wang, X.; Li, Z.; Hu, X. Ag-nanocubes/graphene-oxide/Au-nanoparticles composite film with highly dense plasmonic hotspots for surface-enhanced Raman scattering detection of pesticide. Microchem. J. 2021, 165, 106090–106097. [Google Scholar] [CrossRef]
- Ye, T.; Huang, Z.; Zhu, Z.; Deng, D.; Zhang, R.; Chen, H.; Kong, J. Surface-enhanced Raman scattering detection of dibenzothiophene and its derivatives without π acceptor compound using multilayer Ag NPs modified glass fiber paper. Talanta 2020, 220, 121357–121368. [Google Scholar] [CrossRef]
- Zhang, D.; Liang, P.; Yu, Z.; Xia, J.; Ni, D.; Wang, D.; Zhou, Y.; Cao, Y.; Chen, J.; Chen, J.; et al. Self-assembled “bridge” substance for organochlorine pesticides detection in solution based on Surface Enhanced Raman Scattering. J. Hazard. Mater. 2020, 382, 121023. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, Q.; Liu, G.; Cai, W. 4-Mercaptophenylboronic Acid modified Au Nanosheets-built Hollow Sub-microcubes for Active Capture and Ultrasensitive SERS-based Detection of Hexachlorocyclohexane Pesticides. Sens. Actuators B Chem. 2019, 293, 63–70. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, H.; Liu, W.; Ge, J.; Wu, J.; Wang, S.; Wang, P. Surface-enhanced Raman scattering substrate based on cysteaminemodified gold nanoparticle aggregation for highly sensitive pentachlorophenol detection. RSC Adv. 2016, 6, 85285–85292. [Google Scholar] [CrossRef]
- Zhang, D.; Hao, R.; Zhang, L.; You, H.; Fang, J. Ratiometric Sensing of Polycyclic Aromatic Hydrocarbons Using Capturing Ligand Functionalized Mesoporous Au Nanoparticles as a Surface-Enhanced Raman Scattering Substrate. Langmuir 2020, 36, 11366–11373. [Google Scholar] [CrossRef]
- Gong, X.; Liao, X.; Li, Y.; Cao, H.; Zhao, Y.; Lia, H.; Cassidyc, D.P. Sensitive detection of polycyclic aromatic hydrocarbons with gold colloid coupled chloride ion SERS sensor. Analyst 2019, 144, 6698–6705. [Google Scholar] [CrossRef]
- Yan, B.; Sun, K.; Chao, K.; Alharbi, N.S.; Li, J.; Huang, Q. Fabrication of a Novel Transparent SERS Substrate Comprised of Ag-nanoparticle Arrays and its Application in Rapid Detection of Ractopamine on Meat. Food Anal. Methods 2018, 11, 2329–2335. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, J.; Zhang, L.; Ge, Z.; Wang, X.; Hu, X.; Xu, T.; Li, P.; Xu, W. HS-β-cyclodextrin-functionalized Ag@Fe3O4@Ag nanoparticles as a surface-enhanced Raman spectroscopy substrate for the sensitive detection of butyl benzyl phthalate. Anal. Bioanal. Chem. 2019, 411, 5691–5701. [Google Scholar] [CrossRef]
- Qu, Y.; He, L. Development of a facile rolling method to amplify an analyte’s weak SERS activity and its application for chlordane detection. Anal. Methods 2020, 12, 433–439. [Google Scholar] [CrossRef]
- Zhou, Z.; Lu, J.; Wang, J.; Zou, Y.; Liu, T.; Zhang, Y.; Liu, G.; Tian, Z. Trace detection of polycyclic aromatic hydrocarbons in environmental waters by SERS. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 234, 118250–118257. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, G.; Zhang, H.; Li, Y.; Cai, W. Porous zeolite imidazole frameworkwrapped urchin-like Au-Ag nanocrystals for SERS detection of trace hexachlorocyclohexane pesticides via efficient enrichment. J. Hazard. Mater. 2019, 368, 429–435. [Google Scholar] [CrossRef]
- Yan, L.; Yang, P.; Cai, H.; Chen, L.; Wang, Y.; Li, M. ZIF-8-modified Au–Ag/Si nanoporous pillar array for active capture and ultrasensitive SERS-based detection of pentachlorophenol. Anal. Methods. 2020, 12, 4064–4071. [Google Scholar] [CrossRef] [PubMed]
- Guselnikova, O.; Postnikov, P.; Elashnikov, R.; Miliutina, E.; Svorcik, V.; Lyutakov, O. Metal-organic framework (MOF-5) coated SERS active gold gratings: A platform for the selective detection of organic contaminants in soil. Anal. Chim. Acta 2019, 1068, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Arduini, F.; Cinti, S.; Scognamiglio, V.; Moscone, D. Nanomaterials in electrochemical biosensors for pesticide detection: Advances and challenges in food analysis. Microchim. Acta 2016, 183, 2063–2083. [Google Scholar] [CrossRef]
- Tsopela, A.; Laborde, A.; Salvagnac, L.; Ventalon, V.; Bedel-Pereira, E.; Séguy, I.; Temple-Boyer, P.; Juneau, P.; Izquierdo, R.; Launay, J.J. Development of a lab-on-chip electrochemical biosensor for water quality analysis based on microalgal photosynthesis. Biosens. Bioelectron. 2016, 79, 568–573. [Google Scholar] [CrossRef] [Green Version]
- Cheng, R.; Liu, S.; Shi, H.; Zhao, G. A highly sensitive and selective aptamer-based colorimetric sensor for the rapid detection of PCB 77. J. Hazard. Mater. 2018, 341, 373–380. [Google Scholar] [CrossRef]
- Verdian, A.; Fooladi, E.; Rouhbakhsh, Z. Recent progress in the development of recognition bioelements for polychlorinated biphenyls detection: Antibodies and aptamers. Talanta 2019, 202, 123–135. [Google Scholar] [CrossRef]
- McGregor, D.B.; Partensky, C.; Wilbourn, J.; Rice, J.M. An IARC evaluation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans as risk factors in human carcinogenesis. Environ. Health Perspect. 1998, 106, 755–760. [Google Scholar]
- Wang, Y.; Bai, J.; Huo, B.; Yuan, S.; Zhang, M.; Sun, X.; Peng, Y.; Li, S.; Wang, J.; Ning, B.; et al. Upconversion fluorescent aptasensor for polychlorinated biphenyls detection based on nicking endonuclease and hybridization chain reaction dual-amplification strategy. Anal. Chem. 2018, 90, 9936–9942. [Google Scholar] [CrossRef]
- Verdian, A.; Rouhbakhsh, Z.; Fooladi, E. An ultrasensitive platform for PCB77 detection: New strategy for liquid crystal-based aptasensor fabrication. J. Hazard. Mater. 2021, 402, 123531. [Google Scholar] [CrossRef]
- Zheng, J.; Li, J.; Jiang, Y.; Jin, J.; Wang, K.; Yang, R.; Tan, W. Design of aptamerbased sensing platform using triple-helix molecular switch. Anal. Chem. 2011, 83, 6586–6592. [Google Scholar] [CrossRef]
- Bagheri, E.; Abnous, K.; Alibolandi, M.; Ramezani, M.; Taghdisi, S.M. Triple-helix molecular switch-based aptasensors and DNA sensors. Biosens. Bioelectron. 2018, 111, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Verdian, A.; Housaindokht, M.R.; Abnous, K. A fluorescent aptasensor for potassium ion detection-based triple-helix molecular switch. Anal. Biochem. 2014, 466, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, H.; Xu, J.; Song, D.; Sun, G.; Xu, M. Sphingobium hydrophobicum sp. nov., a hydrophobic bacterium isolated from electronic-waste-contaminated sediment. Int. J. Syst. Evol. Microbiol. 2016, 66, 3912–3916. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yao, H.; Song, D.; Sun, G.; Xu, M. Extracellular chemoreceptor of deca-brominated diphenyl ether and its engineering in the hydrophobic chassis cell for organics biosensing. Chem. Eng. J. 2021, 433, 133266. [Google Scholar] [CrossRef]
- Sunantha, G.; Vasudevan, N. Assessment of perfluorooctanoic acid and Perfluorooctane sulfonates in surface water–Tamil Nadu, India. Mar. Poll. Bull. 2016, 109, 612–618. [Google Scholar] [CrossRef]
- Sunantha, G.; Vasudevan, N. A method for detecting perfluorooctanoic acid and perfluorooctane sulfonate in water samples using genetically engineered bacterial biosensor. Sci. Total Environ. 2021, 759, 143544. [Google Scholar] [CrossRef]
- Cennamo, N.; Zeni, L.; Tortora, P.; Regonesi, M.E.; Giusti, A.; Staiano, M.; D’Auria, S.; Varriale, A. A High Sensitivity Biosensor to detect the presence of perfluorinated compounds in environment. Talanta 2018, 178, 955–961. [Google Scholar] [CrossRef]
- Nair, R.V.; Vijaya, R. Photonic crystal sensors: An overview. Prog. Quant. Electr. 2010, 34, 89–134. [Google Scholar] [CrossRef]
- Wang, L.; Chen, D.; Jiang, K.; Shen, G. New insights and perspectives into biological materials for flexible electronics. Chem. Soc. Rev. 2017, 46, 6764–6815. [Google Scholar] [CrossRef]
- Kou, D.; Zhang, Y.; Zhang, S.; Wu, S.; Ma, W. High-sensitive and stable photonic crystal sensors for visual detection and discrimination of volatile aromatic hydrocarbon vapors. Chem. Eng. J. 2019, 375, 121987. [Google Scholar] [CrossRef]
- Shaikh, A.; Sharan, P.; Srikanth, P.C.; Devi, M. A novel automated framework for water impurity detection. Int. J. Inf. Tecnol. 2021, 13, 785–792. [Google Scholar] [CrossRef]
- Wolfbeis, O.S. Fiber-optic chemical sensors and biosensors. Anal. Chem. 2006, 78, 3859. [Google Scholar] [CrossRef] [PubMed]
- McKinley, B.A. ISFET and Fiber Optic Sensor Technologies: In Vivo Experience for Critical Care Monitoring. Chem. Rev. 2008, 108, 826–844. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Torres, D.; Elosua, C.; Arregui, F.J. Optical Fiber Sensors Based on Microstructured Optical Fibers to Detect Gases and Volatile Organic Compounds—A Review. Sensors 2020, 20, 2555. [Google Scholar] [CrossRef]
- Wood, W.R. On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum. Proc. Phys. Soc. Lond. 1902, 18, 269–275. [Google Scholar] [CrossRef]
- Zeng, S.; Baillargeat, D.; Ho, H.P.; Yong, K.T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014, 43, 3426–3452. [Google Scholar] [CrossRef]
- Cennamo, N.; D’Agostino, G.; Porto, G.; Biasiolo, A.; Perri, C.; Arcadio, F.; Zeni, L. A Molecularly Imprinted Polymer on a Plasmonic Plastic Optical Fiber to Detect Perfluorinated Compounds in Water. Sensors 2018, 18, 1836. [Google Scholar] [CrossRef] [Green Version]
- Cennamo, N.; D’Agostino, G.; Sequeira, F.; Mattiello, F.; Porto, G.; Biasiolo, A.; Nogueira, R.; Bilro, L.; Zeni, L. A Simple and Low-Cost Optical Fiber Intensity-Based Configuration for Perfluorinated Compounds in Water Solution. Sensors 2018, 18, 3009. [Google Scholar] [CrossRef] [Green Version]
- Kaur, V.; Singh, S. A dual-channel surface plasmon resonance biosensor based on a photonic crystal fiber for multianalyte sensing. J. Computat. Electron. 2019, 18, 319–328. [Google Scholar] [CrossRef]
- Islam, M.R.; Jamil, A.; Zaman, S.U.; Ahsan, S.A.H.; Pulak, M.K.; Mehjabin, F.; Khan, M.I.; Chowdhury, J.A.; Islam, M. Design and analysis of birefringent SPR based PCF biosensor with ultra-high sensitivity and low loss. Optik 2020, 221, 165311. [Google Scholar] [CrossRef]
- Chapman, J.; Truong, V.K.; Elbourne, A.; Gangadoo, S.; Cheeseman, S.; Rajapaksha, P.; Latham, K.; Crawford, R.J.; Cozzolino, D. Combining chemometrics and sensors: Toward new applications in monitoring and environmental analysis. Chem. Rev. 2020, 120, 6048. [Google Scholar] [CrossRef] [PubMed]
- Lvova, L.; Kirsanov, D.; Legin, A.; Di Natale, C. (Eds.) Multisensor Systems for Chemical Analysis—Materials and Sensors; Pan Stanford Publishing: Singapore, 2014; pp. 69–138. ISBN 9789814411158. [Google Scholar]
- Chen, S.; Wang, Y.; Feng, L. Specific detection and discrimination of dithiocarbamates using CTAB-encapsulated fluorescent copper nanoclusters. Talanta 2020, 210, 120627. [Google Scholar] [CrossRef] [PubMed]
- Behera, P.; Mohanty, A.; De, M. Functionalized Fluorescent Nanodots for Discrimination of Nitroaromatic Compounds. ACS Appl. Nano Mater. 2020, 3, 2846–2856. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Z.; Qu, X.; Zheng, S.; Yin, D.; Fu, H. Screening and Discrimination of Perfluoroalkyl Substances in Aqueous Solution Using a LuminescentMetal−Organic Framework Sensor Array. ACS Appl. Mater. Interfaces 2021, 13, 47706–47716. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Tian, X.; Li, Y.; Yang, C.; Huang, Y.; Nie, Y. Rapid and sensitive screening of multiple polycyclic aromatic hydrocarbons by a reusable fluorescent sensor array. J. Hazord. Mater. 2022, 424, 127694. [Google Scholar] [CrossRef]
- Tropp, J.; Ihde, M.H.; Crater, E.R.; Bell, N.C.; Bhatta, R.; Johnson, I.C.; Bonizzoni, M.; Azoulay, J.D. A Sensor Array for the Nanomolar Detection of Azo Dyes in Water. ACS Sens. 2020, 5, 1541–1547. [Google Scholar] [CrossRef]
- Chen, L.; Tian, X.; Li, Y.; Lu, L.; Nie, Y.; Wang, Y. Broad-spectrum pesticide screening by multiple cholinesterases and thiocholine sensors assembled high-throughput optical array system. J. Hazord. Mater. 2021, 402, 123830. [Google Scholar] [CrossRef]
- Available online: https://www.mordorintelligence.com/industry-reports/global-chemical-sensors-market-industry (accessed on 20 March 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caroleo, F.; Magna, G.; Naitana, M.L.; Di Zazzo, L.; Martini, R.; Pizzoli, F.; Muduganti, M.; Lvova, L.; Mandoj, F.; Nardis, S.; et al. Advances in Optical Sensors for Persistent Organic Pollutant Environmental Monitoring. Sensors 2022, 22, 2649. https://doi.org/10.3390/s22072649
Caroleo F, Magna G, Naitana ML, Di Zazzo L, Martini R, Pizzoli F, Muduganti M, Lvova L, Mandoj F, Nardis S, et al. Advances in Optical Sensors for Persistent Organic Pollutant Environmental Monitoring. Sensors. 2022; 22(7):2649. https://doi.org/10.3390/s22072649
Chicago/Turabian StyleCaroleo, Fabrizio, Gabriele Magna, Mario Luigi Naitana, Lorena Di Zazzo, Roberto Martini, Francesco Pizzoli, Mounika Muduganti, Larisa Lvova, Federica Mandoj, Sara Nardis, and et al. 2022. "Advances in Optical Sensors for Persistent Organic Pollutant Environmental Monitoring" Sensors 22, no. 7: 2649. https://doi.org/10.3390/s22072649
APA StyleCaroleo, F., Magna, G., Naitana, M. L., Di Zazzo, L., Martini, R., Pizzoli, F., Muduganti, M., Lvova, L., Mandoj, F., Nardis, S., Stefanelli, M., Di Natale, C., & Paolesse, R. (2022). Advances in Optical Sensors for Persistent Organic Pollutant Environmental Monitoring. Sensors, 22(7), 2649. https://doi.org/10.3390/s22072649