Coded-GFDM for Reliable Communication in Underwater Acoustic Channels
<p>A typical convolutional encoder.</p> "> Figure 2
<p>Proposed coded-GFDM transceiver architecture.</p> "> Figure 3
<p>BCH encoded 4QAM-GFDM schemes. (<b>a</b>) Comparison of selected BCH schemes with MF equalizer. (<b>b</b>) Comparison of selected BCH schemes with ZF equalizer. (<b>c</b>) Error performance as a function of Tx-Rx distance for BCH (31,6) scheme with MF equalizer. (<b>d</b>) Error performance as a function of Tx-Rx distance for BCH (31,6) scheme with ZF equalizer.</p> "> Figure 4
<p>RS encoded 4QAM-GFDM schemes. (<b>a</b>) Comparison of selected RS schemes with MF equalizer. (<b>b</b>) Comparison of selected RS schemes with ZF equalizer. (<b>c</b>) Error performance as a function of Tx-Rx distance for RS (15,3) scheme with MF equalizer. (<b>d</b>) Error performance as a function of Tx-Rx distance for RS (15,3) scheme with ZF equalizer.</p> "> Figure 5
<p>Convolutionally encoded 4QAM-GFDM schemes. (<b>a</b>) Comparison of selected convolutional codes with MF equalizer. (<b>b</b>) Comparison of selected convolutional codes with ZF equalizer. (<b>c</b>) Error performance as a function of Tx-Rx distance for rate 1/4, constraint length 5 scheme with MF equalizer. (<b>d</b>) Error performance as a function of Tx-Rx distance for rate 1/4, constraint length 5 scheme with ZF equalizer.</p> ">
Abstract
:1. Introduction
- A coded-GFDM transceiver modeled in MATLAB for a shallow underwater acoustic channel.
- SER analysis of the proposed architecture for various transmitter and receiver distances along with the comparison of coded and uncoded GFDM modulation.
2. Literature Review
3. System Architecture
3.1. Forward Error Correction Codes
- Block length
- Parity check bits:
- Minimum distance
3.2. GFDM Transceiver Architecture
3.3. Shallow Underwater Acoustic Channel
4. Simulation Setup and Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pompili, D.; Akyildiz, I.F. Overview of networking protocols for underwater wireless communications. IEEE Commun. Mag. 2009, 47, 97–102. [Google Scholar] [CrossRef]
- Murad, M.; Tasadduq, I.A.; Otero, P.; Poncela, J. Flexible OFDM Transceiver for Underwater Acoustic Channel: Modeling, Implementation and Parameter Tuning. Wirel. Pers. Commun. 2021, 116, 1423–1441. [Google Scholar] [CrossRef]
- Qu, F.; Yang, L. Basis expansion model for underwater acoustic channels? In Proceedings of the OCEANS 2008, Quebec City, QC, Canada, 15–18 September 2008; pp. 1–7. [Google Scholar]
- Qiao, G.; Babar, Z.; Ma, L.; Liu, S.; Wu, J. MIMO-OFDM underwater acoustic communication systems—A review. Phys. Commun. 2017, 23, 56–64. [Google Scholar] [CrossRef]
- Li, B.; Huang, J.; Zhou, S.; Ball, K.; Stojanovic, M.; Freitag, L.; Willett, P. Further results on high-rate MIMO-OFDM underwater acoustic communications. In Proceedings of the OCEANS 2008, Quebec City, QC, Canada, 15–18 September 2008; pp. 1–6. [Google Scholar]
- Tasadduq, I.A.; Murad, M.; Otero, P. CPM-OFDM Performance over Underwater Acoustic Channels. J. Mar. Sci. Eng. 2021, 9, 1104. [Google Scholar] [CrossRef]
- Qasem, Z.A.H.; Wang, J.; Kuai, X.; Sun, H.; Esmaiel, H. Enabling Unique Word OFDM for Underwater Acoustic Communication. IEEE Wirel. Commun. Lett. 2021, 10, 1886–1889. [Google Scholar] [CrossRef]
- Murad, M.; Tasadduq, I.A.; Otero, P. Towards Multicarrier Waveforms Beyond OFDM: Performance Analysis of GFDM Modulation for Underwater Acoustic Channels. IEEE Access 2020, 8, 222782–222799. [Google Scholar] [CrossRef]
- Fettweis, G.; Krondorf, M.; Bittner, S. GFDM-generalized frequency division multiplexing. In Proceedings of the VTC Spring 2009-IEEE 69th Vehicular Technology Conference, Barcelona, Spain, 26–29 April 2009; pp. 1–4. [Google Scholar]
- Li, Y.; Niu, K.; Dong, C. Polar-Coded GFDM Systems. IEEE Access 2019, 7, 149299–149307. [Google Scholar] [CrossRef]
- Zhong, J.; Chen, G.; Mao, J.; Dang, S.; Xiao, P. Iterative frequency domain equalization for MIMO-GFDM systems. IEEE Access 2018, 6, 19386–19395. [Google Scholar] [CrossRef]
- Matthé, M.; Mendes, L.; Gaspar, I.; Michailow, N.; Zhang, D.; Fettweis, G.J. Precoded GFDM transceiver with low complexity time domain processing. EURASIP J. Wirel. Commun. Netw. 2016, 2016, 138. [Google Scholar] [CrossRef] [Green Version]
- Michailow, N.; Mendes, L.; Matthé, M.; Gaspar, I.; Festag, A.; Fettweis, G. Robust WHT-GFDM for the next generation of wireless networks. IEEE Commun. Lett. 2014, 19, 106–109. [Google Scholar] [CrossRef]
- Al-Barrak, A.; Al-Sherbaz, A.; Kanakis, T.; Crockett, R. Enhancing BER performance limit of BCH and RS codes using multipath diversity. Computers 2017, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Seo, C.; Park, K.-C.; Yoon, J.R. Effectiveness of Convolutional Code in Multipath Underwater Acoustic Channel. Jpn. J. Appl. Phys. 2013, 52, 07HG01. [Google Scholar] [CrossRef]
- Rajappa, A.C.J.; Ramadhas, S.D.; Anjaneyulu, B.M.; Kuppusamy, M.R. Golden Coded GFDM for 5G Communication. Wirel. Pers. Commun. 2020, 115, 2335–2348. [Google Scholar] [CrossRef]
- Singh, S.; Grund, M.; Bingham, B.; Eustice, R.; Singh, H.; Freitag, L. Underwater acoustic navigation with the WHOI micro-modem. In Proceedings of the OCEANS 2006, Boston, MA, USA, 18–21 September 2006; pp. 1–4. [Google Scholar]
- Carrick, M.; Reed, J.H. Improved GFDM equalization in severe frequency selective fading. In Proceedings of the 2017 IEEE 38th Sarnoff Symposium, Newark, NJ, USA, 18–20 September 2017; pp. 1–6. [Google Scholar]
- Manikandan, J.; Manikandan, M. Performance analysis of various FEC codes for wireless communication. In Proceedings of the Second International Conference on Current Trends In Engineering and Technology-ICCTET 2014, Coimbatore, India, 8 July 2014; pp. 435–440. [Google Scholar]
- Murad, M.; Tasadduq, I.A.; Otero, P. Ciphered BCH Codes for PAPR Reduction in the OFDM in Underwater Acoustic Channels. J. Mar. Sci. Eng. 2022, 10, 91. [Google Scholar] [CrossRef]
- Sabna, N.; Revathy, R.; Pillai, P.S. BCH coded OFDM for undersea acoustic links. In Proceedings of the 2015 International Symposium on Ocean Electronics (SYMPOL), Kochi, India, 18–20 November 2015; pp. 1–6. [Google Scholar]
- Anwar, W.; Krause, A.; Kumar, A.; Franchi, N.; Fettweis, G.P. Performance Analysis of Various Waveforms and Coding Schemes in V2X Communication Scenarios. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea, 25–28 May 2020; pp. 1–8. [Google Scholar]
- Hebbar, R.P.; Poddar, P.G. Generalized frequency division multiplexing–based acoustic communication for underwater systems. Int. J. Commun. Syst. 2020, 33, e4292. [Google Scholar] [CrossRef]
- Hebbar, R.P.; Poddar, P.G. Generalized frequency division multiplexing for acoustic communication in underwater systems. In Proceedings of the 2017 International Conference on Circuits, Controls, and Communications (CCUBE), Bangalore, India, 15–16 December 2017; pp. 86–90. [Google Scholar]
- Clark, M.P. Wireless Access Networks; Wiley Online Library: Hoboken, NJ, USA, 2000. [Google Scholar]
- Proakis, J.G.; Salehi, M. Digital Communications; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Blahut, R.E. Algebraic fields, signal processing, and error control. Proc. IEEE 1985, 73, 874–893. [Google Scholar] [CrossRef]
- Sklar, B. Digital Communications: Fundamentals and Applications, 2nd ed.; Prentice-Hall Englewood Cliffs: Hoboken, NJ, USA, 2001. [Google Scholar]
- Reed, I.S.; Solomon, G. Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math. 1960, 8, 300–304. [Google Scholar] [CrossRef]
- Michailow, N.; Datta, R.; Krone, S.; Lentmaier, M.; Fettweis, G. Generalized frequency division multiplexing: A flexible multi-carrier modulation scheme for 5th generation cellular networks. In Proceedings of the German Microwave Conference (GeMiC’12), Ilmenau, Germany, 12–14 March 2012; pp. 1–4. [Google Scholar]
- Liu, C.; Zakharov, Y.V.; Chen, T. Doubly Selective Underwater Acoustic Channel Model for a Moving Transmitter/Receiver. IEEE Trans. Veh. Technol. 2012, 61, 938–950. [Google Scholar] [CrossRef]
- Bocus, M.J.; Agrafiotis, D.; Doufexi, A. Underwater acoustic video transmission using MIMO-FBMC. In Proceedings of the 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, Japan, 28–31 May 2018; pp. 1–6. [Google Scholar]
- Wan, L. Underwater Acoustic OFDM: Algorithm Design, DSP Implementation, and Field Performance. Ph.D. Dissertation, University of Connecticut, Mansfield, CT, USA, 2014. [Google Scholar]
- Philip, M.; Morse, K.U.I. Theoretical Acoustics; Princeton University Press: Princeton, NJ, USA, 1986. [Google Scholar]
- Otero, P. Fundamentos de Propagación de Ondas; Universidad de Malaga, Manual: Malaga, Spain, 2015. [Google Scholar]
- Ruiz-Vega, F.; Clemente, M.C.; Otero, P.; Paris, J.F. Ricean shadowed statistical characterization of shallow water acoustic channels for wireless communications. arXiv 2011, arXiv:1112.4410. [Google Scholar]
- Radosevic, A.; Proakis, J.G.; Stojanovic, M. Statistical characterization and capacity of shallow water acoustic channels. In Proceedings of the OCEANS 2009-EUROPE, Bremen, Germany, 11–14 May 2009; pp. 1–8. [Google Scholar]
- Mahmood, A.; Chitre, M. Modeling colored impulsive noise by Markov chains and alpha-stable processes. In Proceedings of the OCEANS 2015—Genova, Genova, Italy, 18–21 May 2015; pp. 1–7. [Google Scholar]
- Zhang, X.; Ying, W.; Yang, P.; Sun, M. Parameter estimation of underwater impulsive noise with the Class B model. IET Radar Sonar Navig. 2020, 14, 1055–1060. [Google Scholar] [CrossRef]
- Stojanovic, M. On the relationship between capacity and distance in an underwater acoustic communication channel. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2007, 11, 34–43. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
No. of subcarriers | 128 |
Number of time slot | 9 |
Mapping | 4-QAM |
Active subcarriers | 96 |
Active subsymbols | 7 |
Roll-off factor | 0.4 |
Bandwidth | 10 KHz |
Channel coding | BCH, RS, Convolutional |
Pulse shape | Raised cosine |
Symbol | Quantity |
---|---|
TX–RX distance | km |
Depth | m |
Max doppler shift | Hz |
Gain vector | [0; −1.5; −2.5; −7] dB |
Tau vector | [0; 1; 2; 5] ms |
Atmospheric pressure | Pa |
Salinity | 35 parts/1000 |
Density | 103 Kg/m3 |
Water temperature | 25 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murad, M.; Tasadduq, I.A.; Otero, P. Coded-GFDM for Reliable Communication in Underwater Acoustic Channels. Sensors 2022, 22, 2639. https://doi.org/10.3390/s22072639
Murad M, Tasadduq IA, Otero P. Coded-GFDM for Reliable Communication in Underwater Acoustic Channels. Sensors. 2022; 22(7):2639. https://doi.org/10.3390/s22072639
Chicago/Turabian StyleMurad, Mohsin, Imran A. Tasadduq, and Pablo Otero. 2022. "Coded-GFDM for Reliable Communication in Underwater Acoustic Channels" Sensors 22, no. 7: 2639. https://doi.org/10.3390/s22072639
APA StyleMurad, M., Tasadduq, I. A., & Otero, P. (2022). Coded-GFDM for Reliable Communication in Underwater Acoustic Channels. Sensors, 22(7), 2639. https://doi.org/10.3390/s22072639