Non-Destructive Measurement of Acetic Acid and Its Distribution in a Photovoltaic Module during Damp Heat Testing Using pH-Sensitive Fluorescent Dye Sensors
<p>(<b>a</b>) Fluorescence spectra of pH sensor with SNARF-4F impregnated in the membrane filter; (<b>b</b>) FIR values calculated from the fluorescence spectra. The solid line is the fitting curve obtained using Equation (<a href="#FD2-sensors-22-02520" class="html-disp-formula">2</a>).</p> "> Figure 2
<p>(<b>a</b>) Photograph of numbered pH sensors equally spaced on the PV module; (<b>b</b>) cross-sectional schematic diagram of the PV module and the method used for recording fluorescence spectra.</p> "> Figure 3
<p><math display="inline"><semantics> <mrow> <mi>I</mi> <mo>−</mo> <mi>V</mi> </mrow> </semantics></math> characteristics during 85 °C, 85%RH DH test for modules with (<b>a</b>) EVA and (<b>b</b>) silicone encapsulants.</p> "> Figure 4
<p>Temporal response of FIR values measured by the pH sensors as a function of the DH test time for modules with (<b>a</b>) EVA and (<b>b</b>) silicone encapsulants. <math display="inline"><semantics> <mrow> <mi>F</mi> <mi>I</mi> <msub> <mi>R</mi> <mi>max</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>F</mi> <mi>I</mi> <msub> <mi>R</mi> <mi>min</mi> </msub> </mrow> </semantics></math> correspond to the values shown in <a href="#sensors-22-02520-t001" class="html-table">Table 1</a>.</p> "> Figure 5
<p>(<b>a</b>) Temporal response of pH values calculated using the calibration curve from FIR values measured by the edge and center sensors; (<b>b</b>) acetate ion concentrations calculated using the pH values.</p> "> Figure 6
<p>Changes in pH distribution within the PV module surface with respect to the DH test time.</p> "> Figure 7
<p>(<b>a</b>) Spatial distribution of acetic acid density. Each plot corresponds to the time from 0 to 4000 h for 250 h step. (<b>b</b>) Time variation of acetate ion concentration at the edge and center. Curves and points represent solution of Equation (<a href="#FD3-sensors-22-02520" class="html-disp-formula">3</a>) and average of experimental results, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calibration between pH and Fluorescence Intensity Ratio
- 1.
- First, a Britton–Robinson (BR) buffer solution was prepared so that the pH value did not significantly change when it was dripped onto the sensor [33]. For this purpose, phosphoric acid, boric acid, and acetic acid were prepared with a concentration of 0.04 M and diluted in a measuring cylinder to a total volume of 500 mL with ultrapure water.
- 2.
- Then, 0.2 M NaOH was injected into the BR buffer, and the amount of NaOH that was injected was adjusted to obtain a predetermined pH value while the pH was measured using a calibrated pH meter (SevenEasy pH, Mettler–Toledo International Inc., Greifensee, Switzerland). The pH range after adjustment was 2–11.
- 3.
- Finally, 20 μL pH-adjusted BR buffer was added to the prepared sensor substrate, and the fluorescence intensity spectrum and FIR were measured in the wet state with a spectrometer (QE65000, Ocean Insight Inc., Orlando, FL, USA). The intensity of the fluorescence excitation laser was 100 μW, and the integration time of the spectroscope was 10 s. The FIR value was calculated using Equation (1). Please note that every time a spectroscopic measurement was completed, the sensor substrate was replaced.
2.2. Experimental Procedure
3. Results
3.1. Characteristics of PV Modules
3.2. Changes in FIR and pH Values
3.3. Ph Mapping
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar cell efficiency tables (version 39). Prog. Photovolt. Res. Appl. 2012, 20, 12–20. [Google Scholar] [CrossRef]
- King, D.L.; Quintana, M.A.; Kratochvil, J.A.; Ellibee, D.E.; Hansen, B.R. Photovoltaic module performance and durability following long-term field exposure. Prog. Photovolt. Res. Appl. 2000, 8, 241–256. [Google Scholar] [CrossRef] [Green Version]
- International Electrotechnical Commission. IEC 61215 Ed. 2.0; International Electrotechnical Commission: Geneva, Switzerland, 2005. [Google Scholar]
- Wohlgemuth, J.H.; Kempe, M.D. Equating damp heat testing with field failures of PV modules. In Proceedings of the 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL, USA, 16–21 June 2013; pp. 126–131. [Google Scholar] [CrossRef]
- Peike, C.; Kaltenbach, T.; Weiβ, K.-A.; Koehl, M. Non-destructive degradation analysis of encapsulants in PV modules by Raman spectroscopy. Sol. Energy Mater. Sol. Cells 2011, 95, 1686–1693. [Google Scholar] [CrossRef]
- Masuda, A.; Yamamoto, C.; Hara, Y.; Ionue, M.; Uchiyama, N.; Doi, T. Degradation Mechanism of Photovoltaic Modules by Extended Damp-Heat or Thermal-Cycle Test. In Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition, Paris, France, 30 September–4 October 2013; pp. 2978–2981. [Google Scholar] [CrossRef]
- Agroui, K.; Collins, G. Characterisation of EVA encapsulant material by thermally stimulated current technique. Sol. Energy Mater. Sol. Cells 2003, 80, 33–45. [Google Scholar] [CrossRef]
- Kempe, M.D.; Jorgensen, G.J.; Terwilliger, K.M.; McMahon, T.J.; Kennedy, C.E.; Borek, T.T. Acetic acid production and glass transition concerns with ethylene-vinyl acetate used in photovoltaic devices. Sol. Energy Mater. Sol. Cells 2007, 91, 315–329. [Google Scholar] [CrossRef]
- Peike, C.; Hoffmann, S.; Hülsmann, P.; Thaidigsmann, B.; Weiβ, K.-A.; Koehl, M.; Bentz, P. Origin of damp-heat induced cell degradation. Sol. Energy Mater. Sol. Cells 2013, 116, 49–54. [Google Scholar] [CrossRef]
- Ketola, B.; Norris, A. Degradation Mechanism Investigation of Extended Damp Heat Aged PV Modules. In Proceedings of the 26th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 5–9 September 2011; pp. 3523–3528. [Google Scholar] [CrossRef]
- Czanderna, A.W.; Pern, F.J. Encapsulation of PV modules using ethylene vinyl acetate copolymer as a pottant: A critical review. Sol. Energy Mater. Sol. Cells 1996, 43, 101–181. [Google Scholar] [CrossRef]
- Allen, N.S.; Edge, M.; Rodriguez, M.; Liauw, C.M.; Fontan, E. Aspects of the thermal oxidation, yellowing and stabilisation of ethylene vinyl acetate copolymer. Polym. Degrad. Stab. 2000, 71, 1–14. [Google Scholar] [CrossRef]
- Poulek, V.; Šafránková, J.; Černá, L.; Libra, M.; Beránek, V.; Finsterle, T.; Hrzina, P. PV Panel and PV Inverter Damages Caused by Combination of Edge Delamination, Water Penetration, and High String Voltage in Moderate Climate. IEEE J. Photovolt. 2021, 11, 561–565. [Google Scholar] [CrossRef]
- Masuda, A.; Uchiyama, N.; Hara, Y. Degradation by acetic acid for crystalline Si photovoltaic modules. Jpn. J. Appl. Phys. 2015, 54, 04DR04. [Google Scholar] [CrossRef]
- Wendling, M.D.; Mondon, A.; Kraft, A.; Bartsch, J.; Glatthaar, M.; Glunz, S.W. Analysis of chemical stability of printing pastes in electrochemical plating solutions. Energy Procedia 2012, 27, 497–502. [Google Scholar] [CrossRef]
- Olweya, S.; Kalio, A.; Kraft, A.; Deront, E.; Filipovic, A.; Bartsch, J.; Glatthaar, M. Fine-line Silver Pastes for Seed Layer Screen Printing with Varied Glass Content. Energy Procedia 2013, 43, 37–43. [Google Scholar] [CrossRef]
- Kraft, A.; Wolf, C.; Lorenz, A.; Bartsch, J.; Glatthaar, M.; Glunz, S.W. Long Term Stability Analysis of Copper Front Side Metallization for Silicon Solar Cells. Energy Procedia 2014, 55, 478–485. [Google Scholar] [CrossRef]
- Kraft, A.; Labusch, L.; Ensslen, T.; Durr, I.; Bartsch, J.; Glatthaar, M.; Glunz, S.; Reinecke, H. Investigation of Acetic Acid Corrosion Impact on Printed Solar Cell Contacts. IEEE J. Photovolt. 2015, 5, 736–743. [Google Scholar] [CrossRef]
- Jorgensen, G.J.; Terwilliger, K.M.; DelCueto, J.A.; Glick, S.H.; Kempe, M.D.; Pankow, J.W.; Pern, F.J.; McMahon, T.J. Moisture transport, adhesion, and corrosion protection of PV module packaging materials. Sol. Energy Mater. Sol. Cells 2006, 90, 2739–2775. [Google Scholar] [CrossRef]
- Kempe, M.D. Modeling of rates of moisture ingress into photovoltaic modules. Sol. Energy Mater. Sol. Cells 2006, 90, 2720–2738. [Google Scholar] [CrossRef]
- Miller, D.C.; Muller, M.T.; Kempe, M.D.; Araki, K.; Kennedy, C.E.; Kurtz, S.R. Durability of polymeric encapsulation materials for concentrating photovoltaic systems. Prog. Photovolt. Res. Appl. 2012, 21, 631–651. [Google Scholar] [CrossRef] [Green Version]
- Skoczek, A.; Sample, T.; Dunlop, E.D. The results of performance measurements of field-aged crystalline silicon photovoltaic modules. Prog. Photovolt. Res. Appl. 2009, 17, 227–240. [Google Scholar] [CrossRef]
- Wang, E.; Yang, H.E.; Yen, J.; Chi, S.; Wang, C. Failure Modes Evaluation of PV Module via Materials Degradation Approach. Energy Procedia 2013, 33, 256–264. [Google Scholar] [CrossRef] [Green Version]
- Miyashita, M.; Masuda, A. Correlation between Moisture Ingress and Performance in Photovoltaic Modules. In Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition, Paris, France, 30 September–4 October 2013; pp. 2828–2831. [Google Scholar] [CrossRef]
- Matsuda, K.; Watanabe, T.; Sakaguchi, K.; Yoshikawa, M.; Doi, T.; Masuda, A. Microscopic Degradation Mechanisms in Silicon Photovoltaic Module under Long-Term Environmental Exposure. Jpn. J. Appl. Phys. 2012, 51, 10NF07. [Google Scholar] [CrossRef]
- Masuda, A. (National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan). 2013; Unpublished work. [Google Scholar]
- Hamaoka, R.; Iwami, K.; Itayama, T.; Nagasaki, H.; Takemoto, S.; Yamamoto, C.; Hara, Y.; Masuda, A.; Umeda, N. Detection of acetic acid produced in photovoltaic modules based on tin film corrosion during damp heat test. Jpn. J. Appl. Phys. 2018, 57, 08RG16. [Google Scholar] [CrossRef]
- Asano, S.; Hamaoka, R.; Jonai, S.; Hara, Y.; Masuda, A.; Umeda, N.; Iwami, K. Acetic acid detection in photovoltaic modules during ultraviolet irradiation and damp-heat combined tests. Jpn. J. Appl. Phys. 2022. [Google Scholar] [CrossRef]
- Asaka, T.; Iwami, K.; Taguchi, A.; Umeda, N.; Masuda, A. Detection of acid moisture in photovoltaic modules using a dual wavelength pH-sensitive fluorescent dye. Jpn. J. Appl. Phys. 2014, 53, 04ER18. [Google Scholar] [CrossRef]
- Asaka, T.; Itayama, T.; Nagasaki, H.; Iwami, K.; Yamamoto, C.; Hara, Y.; Masuda, A.; Umeda, N. Development of a pH sensor based on a nanostructured filter adding pH-sensitive fluorescent dye for detecting acetic acid in photovoltaic modules. Jpn. J. Appl. Phys. 2015, 54, 08KG07. [Google Scholar] [CrossRef]
- Liu, J.; Diwu, Z.; Leung, W.-Y. Synthesis and photophysical properties of new fluorinated benzo[c]xanthene dyes as intracellular pH indicators. Bioorganic Med. Chem. Lett. 2001, 11, 2903–2905. [Google Scholar] [CrossRef]
- Kanazashi, Y.; Li, Y.; Onojima, T.; Iwami, K.; Ohta, Y.; Umeda, N. pH Measurement Using Dual-Wavelength Fluorescent Ratio by Two-Photon Excitation for Mitochondrial Activity. Jpn. J. Appl. Phys. 2012, 51, 117001. [Google Scholar] [CrossRef]
- Mongay, C.; Cerda, V. VI/A Britton-Robinson buffer of known ionic strength. Ann. Chim. 1974, 64, 409–412. [Google Scholar]
- Salerno, M.; Ajimo, J.J.; Dudley, J.A.; Binzel, K.; Urayama, P. Characterization of dual-wavelength seminaphthofluorescein and seminapthorhodafluor dyes for pH sensing under high hydrostatic pressures. Anal. Biochem. 2007, 362, 258–267. [Google Scholar] [CrossRef]
- Ketola, B.; McIntosh, K.R.; Norris, A.; Tomalia, M.K. Silicones for Photovoltaic Encapsulation. In Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain, 1–5 September 2008; pp. 2969–2973. [Google Scholar] [CrossRef]
- Tanahashi, T.; Sakamoto, N.; Shibata, H.; Masuda, A. Electrical detection of gap formation underneath finger electrodes on c-Si PV cells exposed to acetic acid vapor under hygrothermal conditions. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; pp. 1075–1079. [Google Scholar] [CrossRef]
- Huang, W.-D.; Deb, S.; Seo, Y.-S.; Rao, S.; Chiao, M.; Chiao, J.C. A passive radio-frequency pH-sensing tag for wireless food-quality monitoring. IEEE Sens. J. 2012, 12, 487–495. [Google Scholar] [CrossRef]
- Jimenez-Jorquera, C.; Orozco, J.; Baldi, A. ISFET based microsensors for environmental monitoring. Sensors 2010, 10, 61–83. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Yan, G.; Wang, Z.; Jiang, P. Continuous accurate pH measurements of human GI tract using a digital pH-ISFET sensor inside a wireless capsule. Measurement 2015, 64, 49–56. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagasaki, H.; Asaka, T.; Iwami, K.; Umeda, N.; Yamamoto, C.; Hara, Y.; Masuda, A. Non-Destructive Measurement of Acetic Acid and Its Distribution in a Photovoltaic Module during Damp Heat Testing Using pH-Sensitive Fluorescent Dye Sensors. Sensors 2022, 22, 2520. https://doi.org/10.3390/s22072520
Nagasaki H, Asaka T, Iwami K, Umeda N, Yamamoto C, Hara Y, Masuda A. Non-Destructive Measurement of Acetic Acid and Its Distribution in a Photovoltaic Module during Damp Heat Testing Using pH-Sensitive Fluorescent Dye Sensors. Sensors. 2022; 22(7):2520. https://doi.org/10.3390/s22072520
Chicago/Turabian StyleNagasaki, Hideaki, Takashi Asaka, Kentaro Iwami, Norihiro Umeda, Chizuko Yamamoto, Yukiko Hara, and Atsushi Masuda. 2022. "Non-Destructive Measurement of Acetic Acid and Its Distribution in a Photovoltaic Module during Damp Heat Testing Using pH-Sensitive Fluorescent Dye Sensors" Sensors 22, no. 7: 2520. https://doi.org/10.3390/s22072520
APA StyleNagasaki, H., Asaka, T., Iwami, K., Umeda, N., Yamamoto, C., Hara, Y., & Masuda, A. (2022). Non-Destructive Measurement of Acetic Acid and Its Distribution in a Photovoltaic Module during Damp Heat Testing Using pH-Sensitive Fluorescent Dye Sensors. Sensors, 22(7), 2520. https://doi.org/10.3390/s22072520