Statistical Analysis of the Consistency of HRV Analysis Using BCG or Pulse Wave Signals
<p>Photograph of the devices used to simultaneously record BCG, ECG and PW signals.</p> "> Figure 2
<p>Peak detection of the BCG, ECG, PW signals. Circles indicate time points from which heart intervals are recorded. J for the BCG signals, R for the ECG and P for pulse wave (PW).</p> "> Figure 3
<p>Data from 50 subjects. (<b>a</b>) linear regression of R-R and J-J intervals. (<b>b</b>) linear regression of R-R and P-P intervals.</p> "> Figure 4
<p>Pairs of HRV metrics (title above each plot) obtained from 50 subjects plotted against the line of identity (representing perfect agreement). <span class="html-italic">x</span>- and <span class="html-italic">y</span>-axes show BCG and ECG values, respectively. (<b>a</b>) Mean. (<b>b</b>) SDNN. (<b>c</b>) pNN50. (<b>d</b>) RMSSD. (<b>e</b>) LF. (<b>f</b>) HF. (<b>g</b>) LF/HF.</p> "> Figure 5
<p>Pairs of HRV metrics obtained from 50 subjects plotted against the line of identity (representing perfect agreement). <span class="html-italic">x</span>- and <span class="html-italic">y</span>-axes show PW and ECG values, respectively. (<b>a</b>) Mean. (<b>b</b>) SDNN. (<b>c</b>) pNN50. (<b>d</b>) RMSSD. (<b>e</b>) LF. (<b>f</b>) HF. (<b>g</b>) LF/HF.</p> "> Figure 6
<p>Pairs of HRV metrics obtained from the medium-term data plotted against the line of identity. <span class="html-italic">x</span>- and <span class="html-italic">y</span>-axes show BCG and ECG values, respectively. (Results from each of the three subjects are shown in different colors.). (<b>a</b>) Mean. (<b>b</b>) SDNN. (<b>c</b>) pNN50. (<b>d</b>) RMSSD. (<b>e</b>) LF. (<b>f</b>) HF. (<b>g</b>) LF/HF.</p> "> Figure 7
<p>Pairs of HRV metrics obtained from the medium-term data plotted against the line of identity. <span class="html-italic">x</span>- and <span class="html-italic">y</span>-axes show PW and ECG values, respectively. (Results from each of the three subjects are shown in different colors.) (<b>a</b>) is for Mean. (<b>b</b>) is for SDNN. (<b>c</b>) is for pNN50. (<b>d</b>) is for RMSSD. (<b>e</b>) is for LF. (<b>f</b>) is for HF. (<b>g</b>) is for LF/HF.</p> "> Figure A1
<p>Bland-Altman plots for the HRV parameters calculated from J-J and R-R intervals. Data from 50 subjects. (<b>a</b>) Mean. (<b>b</b>) SDNN. (<b>c</b>) pNN50. (<b>d</b>) RMSSD. (<b>e</b>) LF. (<b>f</b>) HF. (<b>g</b>) LF/HF. Heavy black line shows mean difference, thin lines represent the 95% confidence intervals and red dots show the measurement data.</p> "> Figure A2
<p>Bland-Altman plots for the HRV parameters calculated from P-P and R-R intervals. Data from 50 subjects. (<b>a</b>) Mean. (<b>b</b>) SDNN. (<b>c</b>) pNN50. (<b>d</b>) RMSSD. (<b>e</b>) LF. (<b>f</b>) HF. (<b>g</b>) LF/HF. Heavy black line shows mean difference, thin lines represent the 95% confidence intervals and red dots show the measurement data.</p> "> Figure A3
<p>Bland-Altman plots for the HRV parameters calculated from J-J and R-R intervals of subject A. (<b>a</b>) Mean. (<b>b</b>) SDNN. (<b>c</b>) pNN50. (<b>d</b>) RMSSD. (<b>e</b>) LF. (<b>f</b>) HF. (<b>g</b>) LF/HF. Heavy black line shows mean difference, thin lines represent the 95% confidence intervals and red dots show the measurement data.</p> "> Figure A4
<p>Bland-Altman plots for the HRV parameters calculated from P-P and R-R intervals of subject A. (<b>a</b>) Mean. (<b>b</b>) SDNN. (<b>c</b>) pNN50. (<b>d</b>) RMSSD. (<b>e</b>) LF. (<b>f</b>) HF. (<b>g</b>) LF/HF. Heavy black line shows mean difference, thin lines represent the 95% confidence intervals and red dots show the measurement data.</p> "> Figure A5
<p>Bland-Altman plots for the HRV parameters calculated from J-J and R-R intervals of subject B. (<b>a</b>) is for Mean. (<b>b</b>) is for SDNN. (<b>c</b>) is for pNN50. (<b>d</b>) is for RMSSD. (<b>e</b>) is for LF. (<b>f</b>) is for HF. (<b>g</b>) is for LF/HF. The black line represents the 95% confidence interval and the red dot represents the measurement data.</p> "> Figure A6
<p>Bland-Altman plots for the HRV parameters calculated from P-P and R-R intervals of subject B. (<b>a</b>) is for Mean. (<b>b</b>) is for SDNN. (<b>c</b>) is for pNN50. (<b>d</b>) is for RMSSD. (<b>e</b>) is for LF. (<b>f</b>) is for HF. (<b>g</b>) is for LF/HF. The black line represents the 95% confidence interval and the red dot represents the measurement data.</p> "> Figure A7
<p>Bland-Altman plots for the HRV parameters calculated from J-J and R-R intervals of subject C. (<b>a</b>) is for Mean. (<b>b</b>) is for SDNN. (<b>c</b>) is for pNN50. (<b>d</b>) is for RMSSD. (<b>e</b>) is for LF. (<b>f</b>) is for HF. (<b>g</b>) is for LF/HF. The black line represents the 95% confidence interval and the red dot represents the measurement data.</p> "> Figure A8
<p>Bland-Altman plots for the HRV parameters calculated from P-P and R-R intervals of subject C. (<b>a</b>) is for Mean. (<b>b</b>) is for SDNN. (<b>c</b>) is for pNN50. (<b>d</b>) is for RMSSD. (<b>e</b>) is for LF. (<b>f</b>) is for HF. (<b>g</b>) is for LF/HF. The black line represents the 95% confidence interval and the red dot represents the measurement data.</p> ">
Abstract
:1. Introduction
- (a)
- A comprehensive statistical analysis, as outlined in the preceding paragraph.
- (b)
- A comparison of the pros and cons of BCG and PW signals as a substitute for ECG when analyzing HRV in young adults.
2. Materials and Methods
3. Results
3.1. Consistency of Beat-to-Beat Interval
3.2. Consistency of the Short-Term Data
3.3. Consistency of the Medium-Term Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Meaning |
BCG | Ballistocardiography |
BA ratio | Bland-Altman ratio |
CV | Coefficients of variation |
ECG | Electrocardiography |
HF | High-frequency range of Spectral power |
HRV | Heart rate variability |
LCCC | Lin’ concordance correlation coefficient |
LF | Low-frequency range of Spectral power |
LH/HF | Ratio of LF to HF |
PW | Pulse wave |
pNN50 | Percentage of the difference between adjacent R-R intervals greater than 50 ms |
RMSSD | Root Mean square of the difference between adjacent R-R intervals |
SDNN | Standard deviation of all R-R intervals |
SD1 | Minor axis of notional Poincaré plot |
SD2 | Major axis of notional Poincaré plot |
Appendix A
Appendix B
BCG | ECG | CVb–CVe | LCCC | Lower, Upper | BA_Ratio | |
---|---|---|---|---|---|---|
Mean | 894.2 ± 30.7 | 890.2 ± 30.6 | 0.01% | 0.997 | 3.4389, 4.7181 | 0.003 |
SDNN | 33.5 ± 5.9 | 32.7 ± 5.9 | −0.62% | 0.995 | −1.3653, 2.8803 | 0.032 |
pNN50 | 7.6 ± 4.7 | 8.5 ± 5.7 | −0.08% | 0.956 | −0.0671, 0.0557 | 0.173 |
RMSSD | 31.0 ± 3.7 | 29.1 ± 4.7 | −0.04% | 0.917 | −4.1423, 7.9383 | 0.100 |
LF | 272.4 ± 38.7 | 270.0 ± 38.9 | −0.01% | 0.997 | 0.2158, 4.4332 | 0.004 |
HF | 54.9 ± 10.7 | 54.1 ± 10.2 | 0.06% | 0.993 | −0.9297, 2.6247 | 0.016 |
LF/HF | 5.1 ± 0.7 | 5.1 ± 0.8 | 0.05% | 0.996 | −0.1409, 0.0922 | 0.010 |
PW | ECG | CVp–CVe | LCCC | Lower, Upper | BA_Ratio | |
---|---|---|---|---|---|---|
Mean | 889.4 ± 29.5 | 890.2 ± 30.6 | −0.01% | 0.994 | −6.7092, 5.2762 | 0.003 |
SDNN | 32.3 ± 5.9 | 32.7 ± 5.9 | 0.02% | 0.991 | −2.0148, 1.2408 | 0.025 |
pNN50 | 6.09 ± 4.8 | 8.5 ± 5.7 | 0.11% | 0.955 | −0.0612,0.0128 | 0.154 |
RMSSD | 27.7 ± 4.4 | 29.1 ± 4.7 | −0.05% | 0.857 | −5.4092, 2.5502 | 0.070 |
LF | 270.9 ± 40.0 | 270.0 ± 38.9 | 0.04% | 0.995 | −6.0331, 7.8191 | 0.013 |
HF | 54.76 ± 10.4 | 54.1 ± 10.2 | 0.01% | 0.988 | −2.2511, 3.5021 | 0.026 |
LF/HF | 5.0 ± 0.8 | 5.1 ± 0.8 | 0.01% | 0.989 | −0.2457, 0.1663 | 0.020 |
BCG | ECG | CVb–CVe | LCCC | Lower, Upper | BA_Ratio | |
---|---|---|---|---|---|---|
Mean | 622.6 ± 11.7 | 623.2 ± 9.3 | 0.01% | 0.997 | −6.4936, 5.3396 | 0.005 |
SDNN | 12.0 ± 2.6 | 10.7 ± 2.2 | 0.02% | 0.996 | −0.6390, 3.1940 | 0.085 |
pNN50 | 3.5 ± 1.4 | 1.5 ± 0.67 | 0.26% | 0.984 | −0.0148, 0.0124 | 0.180 |
RMSSD | 11.2 ± 2.6 | 9.3 ± 3.0 | −0.09% | 0.901 | −8.4857, 12.34 | 0.108 |
LF | 306.8 ± 165.9 | 308.6 ± 168.9 | −0.07% | 0.999 | −8.7343, 5.2423 | 0.011 |
HF | 56.7 ± 30.1 | 56.3 ± 31.1 | −0.02% | 0.997 | −4.1419, 4.7819 | 0.039 |
LF/HF | 5.9 ± 2.4 | 7.9 ± 8.3 | −0.65% | 0.798 | −13.529, 9.7196 | 0.339 |
PW | ECG | CVp–CVe | LCCC | Lower, Upper | BA_Ratio | |
---|---|---|---|---|---|---|
Mean | 621.6 ± 10.4 | 623.2 ± 9.3 | 0.01% | 0.997 | −4.3325, 1.2855 | 0.002 |
SDNN | 10.9 ± 3.02 | 10.7 ± 2.2 | 0.07% | 0.991 | −3.2416, 3.5776 | 0.058 |
pNN50 | 2.8 ± 4.5 | 1.5 ± 0.67 | 0.35% | 0.919 | −0.0049, 0.0039 | 0.275 |
RMSSD | 7.7 ± 2.5 | 9.3 ± 3.0 | −0.06% | 0.899 | −11.1685, 8.0910 | 0.164 |
LF | 306.7 ± 165.3 | 308.6 ± 168.9 | −0.08% | 0.999 | −10.8933, 7.2043 | 0.015 |
HF | 56.5 ± 29.3 | 56.3 ± 31.1 | −0.03% | 0.996 | −4.5774, 4.7434 | 0.041 |
LF/HF | 5.8 ± 2.1 | 7.9 ± 8.3 | −0.69% | 0.635 | −14.2870, 10.2037 | 0.892 |
References
- Alam, N.; Wright, A.K.; Ashcroft, D.M.; Renehan, A.G. Cancer and cardiovascular disease. Lancet 2020, 395, 1903–1904. [Google Scholar] [CrossRef]
- Raeside, R.; Partridge, S.R.; Singleton, A.; Redfern, J. Cardiovascular Disease Prevention in Adolescents: EHealth, Co-Creation, and Advocacy. Med. Sci. 2019, 7, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thom, T.; Haase, N.; Rosamond, W.; Howard, V.J.; Rumsfeld, J.; Manolio, T.; Zheng, Z.J.; Flegal, K.; O’Donnell, C.; Kittner, S.; et al. Heart disease and stroke statistics—2006 update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2006, 113, e85–e151. [Google Scholar] [PubMed] [Green Version]
- Mallik, M.; Camm, A.J.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- da Silva Araujo, G.; Behm, D.G.; Monteiro, E.R.; de Melo Fiuza, A.G.F.; Gomes, T.M.; Vianna, J.M.; Reis, M.S.; da Silva Novaes, J. Order Effects of Resistance and Stretching Exercises on Heart Rate Variability and Blood Pressure in Healthy Adults. J. Strength Cond. Res. 2019, 33, 2684–2693. [Google Scholar] [CrossRef]
- Joyce, D.; Barrett, M. State of the science: Heart rate variability in health and disease. BMJ Support. Palliat. Care 2019, 9, 274–276. [Google Scholar] [CrossRef]
- Malik, M.; Camm, A.J. Heart rate variability. Clin. Cardiol. 1990, 13, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Lip, G.Y.H.; Shantsila, A. Heart rate variability in atrial fibrillation: The balance between sympathetic and parasympathetic nervous system. Eur. J. Clin. Investig. 2019, 49, e13174. [Google Scholar] [CrossRef] [Green Version]
- Su, B.Y.; Enayati, M.; Ho, K.C.; Skubic, M.; Despins, L.; Keller, J.; Popescu, M.; Guidoboni, G.; Rantz, M. Monitoring the Relative Blood Pressure Using a Hydraulic Bed Sensor System. IEEE Trans. Bio-Med. Eng. 2019, 66, 740–748. [Google Scholar] [CrossRef]
- Martin-Yebra, A.; Landreani, F.; Casellato, C.; Pavan, E.; Caiani, E.G. Studying Heart Rate Variability from Ballistocardiography Acquired by Force Platform: Comparison with Conventional ECG. In Proceedings of the 2015 Computing in Cardiology Conference (CinC), Nice, France, 6–9 September 2016. [Google Scholar]
- Nedoma, J.; Fajkus, M.; Martinek, R.; Kepak, S.; Cubik, J.; Zabka, S.; Vasinek, V. Comparison of BCG, PCG and ECG Signals in Application of Heart Rate Monitoring of the Human Body. In Proceedings of the International Conference on Telecommunications & Signal Processing, Barcelona, Spain, 5–7 July 2017; pp. 420–424. [Google Scholar]
- Brueser, C.; Winter, S.; Leonhardt, S. Unsupervised heart rate variability estimation from ballistocardiograms. Int. J. Bioelectromagn. 2013, 15, 1–6. [Google Scholar]
- Shin, J.H.; Hwang, S.H.; Chang, M.H.; Park, K.S. Heart rate variability analysis using a ballistocardiogram during Valsalva manoeuvre and post exercise. Physiol. Meas. 2011, 32, 1239–1264. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, A.; Pantelopoulos, A.; Emir-Farinas, H.; Natarajan, P. Heart rate variability with photoplethysmography in 8 million individuals: A cross-sectional study. Lancet Digit. Health 2020, 2, e650–e657. [Google Scholar] [CrossRef]
- Hoog Antink, C.; Mai, Y.; Peltokangas, M.; Leonhardt, S.; Oksala, N.; Vehkaoja, A. Accuracy of heart rate variability estimated with reflective wrist-PPG in elderly vascular patients. Sci. Rep. 2021, 11, 8123. [Google Scholar] [CrossRef]
- Baek, H.J.; Chung, G.S.; Kim, K.K.; Park, K.S. A smart health monitoring chair for nonintrusive measurement of biological signals. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 150–158. [Google Scholar] [CrossRef]
- Inan, O.T.; Migeotte, P.F.; Park, K.S.; Etemadi, M.; Tavakolian, K.; Casanella, R.; Zanetti, J.; Tank, J.; Funtova, I.; Prisk, G.K.; et al. Ballistocardiography and seismocardiography: A review of recent advances. IEEE J. Biomed. Health Inform. 2015, 19, 1414–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vesterinen, V.; Rinkinen, N.; Nummela, A. A Contact-Free, Ballistocardiography-Based Monitoring System (Emfit QS) for Measuring Nocturnal Heart Rate and Heart Rate Variability: Validation Study. JMIR Biomed. Eng. 2020, 5, e16620. [Google Scholar] [CrossRef]
- Pinheiro, N.; Couceiro, R.; Henriques, J.; Muehlsteff, J.; Quintal, I.; Goncalves, L.; Carvalho, P. Can PPG be Used for HRV Analysis? In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, FL, USA, 16–20 August 2016; pp. 2945–2949. [Google Scholar]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Morgan, C.J.; Aban, I. Methods for evaluating the agreement between diagnostic tests. J. Nucl. Cardiol. Off. Publ. Am. Soc. Nucl. Cardiol. 2016, 23, 511–513. [Google Scholar] [CrossRef] [Green Version]
- Bellenger, C.R.; Miller, D.; Halson, S.L.; Roach, G.; Sargent, C. Wrist-Based Photoplethysmography Assessment of Heart Rate and Heart Rate Variability: Validation of WHOOP. Sensors 2021, 21, 3571. [Google Scholar] [CrossRef]
- Li-Sheng, X.U.; Zhou, S.R.; Yao, Y.; Lin, Q.I. Feasibility Analysis on Pulse Rate Variability as an Estimate of Heart Rate Variability. J. Northeast. Univ. Nat. Sci. 2017, 38, 31–35. [Google Scholar]
- Xu, L.; Yao, Y.; Wang, H.; He, D.; Wang, L.; Jiang, Y. Morphology variability of radial pulse wave during exercise. Bio-Med. Mater. Eng. 2014, 24, 3605–3611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Xu, L.; Feng, S.; Meng, M.Q.H.; Wang, K. Multi-Gaussian fitting for pulse waveform using Weighted Least Squares and multi-criteria decision making method. Comput. Biol. Med. 2013, 43, 1661–1672. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Wang, L.; Fan, X.; Yao, Y.; Geng, N.; Sun, Y.; Xu, L.; Qian, W. A new mathematical model of wrist pulse waveforms characterizes patients with cardiovascular disease—A pilot study. Med. Eng. Phys. 2017, 48, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Tereshchenko, L.G.; Josephson, M.E. Frequency content and characteristics of ventricular conduction. J. Electrocardiol. 2015, 48, 933–937. [Google Scholar] [CrossRef] [Green Version]
- Hari, K.; Muthukaruppan, M.S.; Paruthi, P.; Veezhinathan, M. Performance Evaluation of PPG Signal using Time-Frequency Features. Int. J. Eng. Res. Technol. 2013, 2, 988–992. [Google Scholar]
- Alametsä, J.; Värri, A.; Viik, J.; Hyttinen, J.; Palomäki, A. Ballistocardiogaphic studies with acceleration and electromechanical film sensors. Med. Eng. Physics 2009, 31, 1154–1165. [Google Scholar] [CrossRef]
- Mcdonagh, T.A.; Morrison, C.E.; Lawrence, A.; Ford, I.; Dargie, H.J. Symptomatic and asymptomatic left-ventricular systolic dysfunction in an urban population. Lancet 1997, 350, 829. [Google Scholar] [CrossRef]
- Ciccone, A.B.; Siedlik, J.A.; Wecht, J.M.; Deckert, J.A.; Nguyen, N.D.; Weir, J.P. Reminder: RMSSD and SD1 are identical heart rate variability metrics. Muscle Nerve 2017, 56, 674–678. [Google Scholar] [CrossRef]
- Pham, T.; Lau, Z.J.; Chen, S.H.A.; Makowski, D. Heart Rate Variability in Psychology: A Review of HRV Indices and an Analysis Tutorial. Sensors 2021, 21, 3998. [Google Scholar] [CrossRef]
- Udhayakumar, R.K.; Karmakar, C.; Peng, L.; Palaniswami, M. Effect of Embedding Dimension on Complexity Measures in Identifying Arrhythmia. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, FL, USA, 16–20 August 2016; pp. 6230–6233. [Google Scholar]
- Aletti, F.; Ferrario, M.; De Jesus, T.B.A.; Stirbulov, R.; Silva, A.B.; Cerutti, S.; Sampaio, L.M. Heart Rate Variability in Children with Cyanotic and Acyanotic Congenital Heart Disease: Analysis by Spectral and non Linear Indices. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 4189–4192. [Google Scholar]
- Neves, V.R.; Takahashi, A.C.; do Santos-Hiss, M.D.; Kiviniemi, A.M.; Tulppo, M.P.; de Moura, S.C.; Karsten, M.; Borghi-Silva, A.; Porta, A.; Montano, N.; et al. Linear and nonlinear analysis of heart rate variability in coronary disease. Clin. Auton. Res. Off. J. Clin. Auton. Res. Soc. 2012, 22, 175–183. [Google Scholar] [CrossRef]
- Horie, T. Approximate entropy of electrocardiogram signals in atrial fibrillation. Rinsho Byori Jpn. J. Clin. Pathol. 2013, 61, 893–899. [Google Scholar]
- Graff, B.; Gąsecki, D.; Rojek, A.; Boutouyrie, P.; Nyka, W.; Laurent, S.; Narkiewicz, K. Heart rate variability and functional outcome in ischemic stroke: A multiparameter approach. J. Hypertens. 2013, 31, 1629–1636. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.I. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Mcbride, G.B. A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient. NIWA Client Rep. 2005, 45, 307–310. [Google Scholar]
- Bland, J.M.; Altman, D.J.L. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Radespiel-Tröger, M.; Rauh, R.; Mahlke, C.; Gottschalk, T.; Mück-Weymann, M. Agreement of two different methods for measurement of heart rate variability. Clin. Auton. Res. 2003, 13, 99–102. [Google Scholar] [CrossRef]
- Rauh, R.; Limley, R.; Bauer, R.-D.; Radespiel-Tröger, M.; Mueck-Weymann, M. Comparison of heart rate variability and pulse rate variability detected with photoplethysmography. Proc. SPIE Int. Soc. Opt. Eng. 2004, 5474, 115–126. [Google Scholar] [CrossRef]
- Neshitov, A.; Tyapochkin, K.; Smorodnikova, E.; Pravdin, P. Wavelet Analysis and Self-Similarity of Photoplethysmography Signals for HRV Estimation and Quality Assessment. Sensors 2021, 21, 6798. [Google Scholar] [CrossRef]
- Myles, P.S.; Cui, J. Using the Bland-Altman method to measure agreement with repeated measures. Br. J. Anaesth. 2007, 99, 309–311. [Google Scholar] [CrossRef] [Green Version]
- Hoog Antink, C.; Mai, Y.; Aalto, R.; Bruser, C.; Leonhardt, S.; Oksala, N.; Vehkaoja, A. Ballistocardiography Can Estimate Beat-to-Beat Heart Rate Accurately at Night in Patients After Vascular Intervention. IEEE J. Biomed. Health Inform. 2020, 24, 2230–2237. [Google Scholar] [CrossRef] [PubMed]
- Aydemir, V.B.; Nagesh, S.; Shandhi, M.M.H.; Fan, J.; Klein, L.; Etemadi, M.; Heller, J.A.; Inan, O.T.; Rehg, J.M. Classification of Decompensated Heart Failure from Clinical and Home Ballistocardiography. IEEE Trans. Bio-Med. Eng. 2020, 67, 1303–1313. [Google Scholar] [CrossRef] [PubMed]
- Chang, I.S.; Mak, S.; Armanfard, N.; Boger, J.; Grace, S.L.; Arcelus, A.; Chessex, C.; Mihailidis, A. Quantification of Resting-State Ballistocardiogram Difference Between Clinical and Non-Clinical Populations for Ambient Monitoring of Heart Failure. IEEE J. Transl. Eng. Health Med. 2020, 8, 2700811. [Google Scholar] [CrossRef] [PubMed]
- Aarotale, P.N.; Henriksen, S.N. Potential of Weight Scale Based Ballistocardiography for Identifying Orthostatic Intolerance: A Tilt Table Study. In Proceedings of the 2020 Design of Medical Devices Conference, Minneapolis, MN, USA, 6–9 April 2020. [Google Scholar]
- Kuchulakanti, H.; Mandapati, V.; Borgohain, R.; Sairam, A.; Abhilash, P. Tremor quantification and its measurements on Parkinsonian patients. In Proceedings of the 2nd International Conference on Biomedical and Pharmaceutical Engineering, ICBPE Conference Proceedings 2009, Singapore, 2–4 December 2009. [Google Scholar]
- Wang, K.; Zhu, T.; Zhang, X.; Yu, C.; Cao, X.; Tang, J.; Wan, Z. Comparison of heart rate variability measurements between ballistocardiogram and electrocardiography. Zhonghua Xin Xue Guan Bing Za Zhi 2015, 43, 448–451. [Google Scholar] [PubMed]
- Cao, X.; Wang, K.; Zhang, J.; Tang, J. Possibility of heart rate variability analysis using ballistocardiogram. Sci. Technol. Rev. 2014, 32, 5. [Google Scholar]
- Park, K.S.; Yoon, H. Ballistocardiography. In Seamless Healthcare Monitoring: Advancements in Wearable, Attachable, and Invisible Devices; Tamura, T., Chen, W., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 127–155. [Google Scholar]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [Green Version]
Total Interval Number | Number of Spurious Peaks | |||
---|---|---|---|---|
ECG | PW | BCG | ||
50 subjects | 17,045 | 31 | 22 | 78 |
Subject A | 6015 | 21 | 14 | 197 |
Subject B | 6593 | 13 | 18 | 93 |
Subject C | 10,714 | 9 | 8 | 107 |
Parameters | Definition | |
---|---|---|
Time Domain | Mean (ms) | Average of heart intervals |
SDNN (ms) | Standard deviation of heart intervals | |
pNN50 (%) | Percentage of the difference between adjacent heart intervals that exceed 50 ms | |
RMSSD (ms) | Root mean square of the difference between adjacent heart intervals | |
Frequency Domain | LF (ms2) | Spectral power in the low-frequency range (0.04~0.15 Hz) |
HF (ms2) | Spectral power in the high-frequency range (0.15~0.40 Hz) | |
LF/HF | Ratio of LF to HF |
N | Min (ms) | Max (ms) | Mean (ms) | SD (ms) | CV (%) | |
---|---|---|---|---|---|---|
BCG | 17,045 | 550 | 1472 | 883.3 | 181 | 20.5 |
PW | 17,045 | 551 | 1472 | 886.3 | 182.2 | 20.6 |
ECG | 17,045 | 550 | 1469 | 883.4 | 181.8 | 20.6 |
BCG | ECG | CVb–CVe | LCCC | Lower, Upper | BA_Ratio | |
---|---|---|---|---|---|---|
Mean | 917.3 ± 160.3 | 913.9 ± 158.8 | 0.11% | 0.999 | −1.544, 8.324 | 0.003 |
SDNN | 48.8 ± 21.4 | 49.0 ± 22.0 | −1.04% | 0.994 | −4.688, 4.318 | 0.046 |
pNN50 | 10.5 ± 16.3 | 11.4 ± 17.4 | 0.64% | 0.990 | −5.115, 3.556 | 0.169 |
RMSSD | 44.5 ± 26.1 | 44.4 ± 28.7 | −5.32 | 0.960 | −15.434, 14.867 | 0.198 |
LF | 254.0 ± 341.9 | 250.1 ± 339.6 | −1.16% | 0.999 | −14.261, 22.111 | 0.036 |
HF | 93.7 ± 93.2 | 92.6 ± 97.7 | −6.01% | 0.995 | −45.242, 47.466 | 0.249 |
LF/HF | 2.5 ± 2.0 | 2.8 ± 2.0 | 5.4% | 0.934 | −1.639, 1.218 | 0.265 |
PW | ECG | CVp–CVe | LCCC | Lower, Upper | BA_Ratio | |
---|---|---|---|---|---|---|
Mean | 913.7 ± 159.0 | 913.9 ± 158.8 | 0.03% | 1 | −2.484, 2.014 | 0.001 |
SDNN | 49.6 ± 22.0 | 49.0 ± 22.0 | −0.52% | 0.993 | −4.241, 5.435 | 0.049 |
pNN50 | 11.4 ± 17.1 | 11.4 ± 17.4 | −4.09% | 0.986 | −5.490, 5.710 | 0.246 |
RMSSD | 44.4 ± 26.4 | 44.4 ± 28.7 | −4.59 | 0.98 | −11.143, 10.335 | 0.12 |
LF | 255.8 ± 340.3 | 250.1 ± 339.6 | −1.76% | 0.999 | −23.131, 34.590 | 0.057 |
HF | 100.8 ± 102.2 | 92.6 ± 97.7 | −4.06% | 0.968 | −39.132, 55.485 | 0.245 |
LF/HF | 2.6 ± 2.1 | 2.8 ± 2.0 | 4.93% | 0.972 | −1.084, 0.772 | 0.17 |
BCG | ECG | CVb–CVe | LCCC | Lower, Upper | BA_Ratio | |
---|---|---|---|---|---|---|
Mean | 931.8 ± 90.2 | 927.4 ± 88.9 | 0.1% | 0.998 | −1.243, 9.963 | 0.003 |
SDNN | 59.6 ± 18.5 | 55.79 ± 15.0 | 0.43% | 0.998 | −5.186, 6.793 | 0.053 |
pNN50 | 22.4 ± 15.7 | 22.3 ± 17.6 | −3.53% | 0.981 | −6.339, 6.474 | 0.143 |
RMSSD | 44.3 ± 16.3 | 41.1 ± 13.9 | 3.01% | 0.916 | −7.450, 13.763 | 0.124 |
LF | 534.9 ± 604.9 | 528.5 ± 599.3 | −0.3% | 0.999 | −47.409, 60.029 | 0.051 |
HF | 193.5 ± 192.4 | 181.5 ± 180.5 | −0.02% | 0.971 | −73.307, 97.324 | 0.228 |
LF/HF | 2.5 ± 1.8 | 2.6 ± 1.9 | −0.28% | 0.974 | −0.901, 0.692 | 0.159 |
PW | ECG | CVp–CVe | LCCC | Lower, Upper | BA_Ratio | |
---|---|---|---|---|---|---|
Mean | 927.6 ± 89.2 | 927.4 ± 88.9 | 0.03% | 0.999 | −1.929, 2.344 | 0.001 |
SDNN | 58.4 ± 16.0 | 55.79 ± 15.0 | 0.56% | 0.994 | −2.245, 7.425 | 0.042 |
pNN50 | 24.2 ± 16.9 | 22.3 ± 17.6 | −8.75% | 0.971 | −5.420, 9.153 | 0.157 |
RMSSD | 44.9 ± 15.0 | 41.1 ± 13.9 | −0.2% | 0.918 | −5.258, 12.769 | 0.105 |
LF | 532.4 ± 601.1 | 528.5 ± 599.3 | −0.5% | 0.999 | −13.490, 21.298 | 0.016 |
HF | 194.0 ± 188.7 | 181.5 ± 180.5 | −2.17% | 0.984 | −17.919, 42.956 | 0.081 |
LF/HF | 2.5 ± 1.9 | 2.6 ± 1.9 | 2.26% | 0.986 | −0.358, 0.216 | 0.057 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, H.; Wang, Z.; Yu, B.; Jiang, F.; Geng, N.; Li, Y.; Xu, L.; Zheng, D.; Zhang, B.; Lu, P.; et al. Statistical Analysis of the Consistency of HRV Analysis Using BCG or Pulse Wave Signals. Sensors 2022, 22, 2423. https://doi.org/10.3390/s22062423
Cui H, Wang Z, Yu B, Jiang F, Geng N, Li Y, Xu L, Zheng D, Zhang B, Lu P, et al. Statistical Analysis of the Consistency of HRV Analysis Using BCG or Pulse Wave Signals. Sensors. 2022; 22(6):2423. https://doi.org/10.3390/s22062423
Chicago/Turabian StyleCui, Huiying, Zhongyi Wang, Bin Yu, Fangfang Jiang, Ning Geng, Yongchun Li, Lisheng Xu, Dingchang Zheng, Biyong Zhang, Peilin Lu, and et al. 2022. "Statistical Analysis of the Consistency of HRV Analysis Using BCG or Pulse Wave Signals" Sensors 22, no. 6: 2423. https://doi.org/10.3390/s22062423
APA StyleCui, H., Wang, Z., Yu, B., Jiang, F., Geng, N., Li, Y., Xu, L., Zheng, D., Zhang, B., Lu, P., & Greenwald, S. E. (2022). Statistical Analysis of the Consistency of HRV Analysis Using BCG or Pulse Wave Signals. Sensors, 22(6), 2423. https://doi.org/10.3390/s22062423