Sand Dust Images Enhancement Based on Red and Blue Channels
<p>Formation model for degraded images.</p> "> Figure 2
<p>Flowchart of sand-dust image restoration method based on red and blue channel.</p> "> Figure 3
<p>Sand dust images and histograms.</p> "> Figure 4
<p>Sand dust image correction based on the red channel correction function: (<b>a</b>) Sand-dust images; (<b>b</b>) Corrected image.</p> "> Figure 5
<p>Atmospheric light position selected by two algorithms: (<b>a</b>) Proposed algorithm; (<b>b</b>) Dark channel prior algorithm.</p> "> Figure 6
<p>Qualitative comparison results of sand dust images with weak color cast. (<b>a</b>) Sanddust Images; (<b>b</b>) TFO [<a href="#B9-sensors-22-01918" class="html-bibr">9</a>]; (<b>c</b>) NGT [<a href="#B11-sensors-22-01918" class="html-bibr">11</a>]; (<b>d</b>) BCGF [<a href="#B13-sensors-22-01918" class="html-bibr">13</a>]; (<b>e</b>) AWC [<a href="#B17-sensors-22-01918" class="html-bibr">17</a>]; (<b>f</b>) VRSI [<a href="#B19-sensors-22-01918" class="html-bibr">19</a>]; (<b>g</b>) SBT [<a href="#B20-sensors-22-01918" class="html-bibr">20</a>]; (<b>h</b>) FBE [<a href="#B29-sensors-22-01918" class="html-bibr">29</a>]; (<b>i</b>) GDCP [<a href="#B30-sensors-22-01918" class="html-bibr">30</a>]; (<b>j</b>) HDCP [<a href="#B31-sensors-22-01918" class="html-bibr">31</a>]; (<b>k</b>) RBCP [<a href="#B32-sensors-22-01918" class="html-bibr">32</a>]; (<b>l</b>) Proposed.</p> "> Figure 6 Cont.
<p>Qualitative comparison results of sand dust images with weak color cast. (<b>a</b>) Sanddust Images; (<b>b</b>) TFO [<a href="#B9-sensors-22-01918" class="html-bibr">9</a>]; (<b>c</b>) NGT [<a href="#B11-sensors-22-01918" class="html-bibr">11</a>]; (<b>d</b>) BCGF [<a href="#B13-sensors-22-01918" class="html-bibr">13</a>]; (<b>e</b>) AWC [<a href="#B17-sensors-22-01918" class="html-bibr">17</a>]; (<b>f</b>) VRSI [<a href="#B19-sensors-22-01918" class="html-bibr">19</a>]; (<b>g</b>) SBT [<a href="#B20-sensors-22-01918" class="html-bibr">20</a>]; (<b>h</b>) FBE [<a href="#B29-sensors-22-01918" class="html-bibr">29</a>]; (<b>i</b>) GDCP [<a href="#B30-sensors-22-01918" class="html-bibr">30</a>]; (<b>j</b>) HDCP [<a href="#B31-sensors-22-01918" class="html-bibr">31</a>]; (<b>k</b>) RBCP [<a href="#B32-sensors-22-01918" class="html-bibr">32</a>]; (<b>l</b>) Proposed.</p> "> Figure 7
<p>Qualitative comparison results of various sand storm images: (<b>a</b>) Sanddust Images; (<b>b</b>) TFO [<a href="#B9-sensors-22-01918" class="html-bibr">9</a>]; (<b>c</b>) NGT [<a href="#B11-sensors-22-01918" class="html-bibr">11</a>]; (<b>d</b>) BCGF [<a href="#B13-sensors-22-01918" class="html-bibr">13</a>]; (<b>e</b>) AWC [<a href="#B17-sensors-22-01918" class="html-bibr">17</a>]; (<b>f</b>) VRSI [<a href="#B19-sensors-22-01918" class="html-bibr">19</a>]; (<b>g</b>) SBT [<a href="#B20-sensors-22-01918" class="html-bibr">20</a>]; (<b>h</b>) FBE [<a href="#B29-sensors-22-01918" class="html-bibr">29</a>]; (<b>i</b>) GDCP [<a href="#B30-sensors-22-01918" class="html-bibr">30</a>]; (<b>j</b>) HDCP [<a href="#B31-sensors-22-01918" class="html-bibr">31</a>]; (<b>k</b>) RBCP [<a href="#B32-sensors-22-01918" class="html-bibr">32</a>]; (<b>l</b>) Proposed.</p> "> Figure 7 Cont.
<p>Qualitative comparison results of various sand storm images: (<b>a</b>) Sanddust Images; (<b>b</b>) TFO [<a href="#B9-sensors-22-01918" class="html-bibr">9</a>]; (<b>c</b>) NGT [<a href="#B11-sensors-22-01918" class="html-bibr">11</a>]; (<b>d</b>) BCGF [<a href="#B13-sensors-22-01918" class="html-bibr">13</a>]; (<b>e</b>) AWC [<a href="#B17-sensors-22-01918" class="html-bibr">17</a>]; (<b>f</b>) VRSI [<a href="#B19-sensors-22-01918" class="html-bibr">19</a>]; (<b>g</b>) SBT [<a href="#B20-sensors-22-01918" class="html-bibr">20</a>]; (<b>h</b>) FBE [<a href="#B29-sensors-22-01918" class="html-bibr">29</a>]; (<b>i</b>) GDCP [<a href="#B30-sensors-22-01918" class="html-bibr">30</a>]; (<b>j</b>) HDCP [<a href="#B31-sensors-22-01918" class="html-bibr">31</a>]; (<b>k</b>) RBCP [<a href="#B32-sensors-22-01918" class="html-bibr">32</a>]; (<b>l</b>) Proposed.</p> ">
Abstract
:1. Introduction
- The red channel correction function (RCC) can effectively avoid the problem of insufficient or excessive color cast adjustments in real sand dust images. It restores the lost color channel from the other channels. Because the dust particles absorb less of the red ray under the dusty weather conditions, causing the red ray decay to be the slowest.
- After the input image is processed by the correction function, the blue channel dust particles removal (BDPR) module is applied to remove atmospheric particles in degraded images. We assume that the dust particles absorb blue rays quickly; hence, the intensity of the blue channel is lower. The proposed method can remove sand dust particles more effectively, eliminating the blueish tone of the restored image.
- To obtain more accurate transmission and atmospheric light, the sand dust image and the corrected image are applied to the BDPR module simultaneously, where the sand dust image is used in atmospheric light estimation, and the corrected image is used for calculating transmission.
2. Background
3. Proposed Algorithm
3.1. RCC Module
3.2. BDPR Module
4. Experimental Results
4.1. Qualitative Assessment
4.2. Quantitative Assessment
4.3. Running Time
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RCC | The red-channel-based correction function |
BDPR | Blue-channel-based dust particle removal |
SVD | Singular Value Decomposition |
CLAHE | Combining contrast limited adaptive histogram equalization |
DCP | Dark channel prior |
TFO | Tri-threshold fuzzy Operators |
NGT | Normalized gamma transformation |
BCGF | Blue channel compensation and guided Image filtering |
AWC | Airlight white correction |
VRSI | Visibility restoration of single image |
SBT | Saturation-based transmission map estimation |
FBE | Fusion-based enhancing approach |
GDCP | Generalization of the dark channel Prior |
HDCP | Halo-reduced dark channel Prior |
RBCP | Reversing the blue channel prior |
NIQE | Natural image quality evaluator |
DIIVINE | The distortion identification-based image verity and integrity evaluation index |
NPQI | Natural scene statistics and Perceptual characteristics-based quality index |
References
- Zhang, X.; Hu, W.; Chen, S.; Maybank, S. Graph-embedding-based learning for robust object tracking. IEEE Trans. Ind. Electron. 2013, 61, 1072–1084. [Google Scholar] [CrossRef]
- Castanon, G.; Elgharib, M.; Saligrama, V.; Jodoin, P.M. Retrieval in long-surveillance videos using user-described motion and object attributes. IEEE Trans. Circuits Syst. Video Technol. 2015, 26, 2313–2327. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedi, M.; Srivastava, S. Multi-modal design of an intelligent transportation system. IEEE Trans. Intell. Transp. Syst. 2016, 18, 2017–2027. [Google Scholar] [CrossRef]
- Ferreira, D.L.; Nunes, B.A.A.; Obraczka, K. Scale-free properties of human mobility and applications to intelligent transportation systems. IEEE Trans. Intell. Transp. Syst. 2018, 19, 3736–3748. [Google Scholar] [CrossRef]
- Fang, P.; Zecong, W.; Zhang, X. Vehicle automatic driving system based on embedded and machine learning. In Proceedings of the 2020 International Conference on Computer Vision, Image and Deep Learning (CVIDL), Chongqing, China, 10–12 July 2020; pp. 281–284. [Google Scholar]
- Huang, S.C.; Cheng, F.C.; Chiu, Y.S. Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans. Image Process. 2012, 22, 1032–1041. [Google Scholar] [CrossRef]
- Alruwaili, M.; Gupta, L. A statistical adaptive algorithm for dust image enhancement and restoration. In Proceedings of the 2015 IEEE International Conference on Electro/Information Technology (EIT), Dekalb, IL, USA, 21–23 May 2015; pp. 286–289. [Google Scholar]
- Zhi, N.; Mao, S.; Li, M. Visibility restoration algorithm of sand dust degraded images. J. Image Graph. 2016, 21, 1585–1592. [Google Scholar]
- Al-Ameen, Z. Visibility enhancement for images captured in dusty weather via tuned tri-threshold fuzzy intensification operators. Int. J. Intell. Syst. Appl. 2016, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Yan, T.; Wang, L.; Wang, J. Method to Enhance Degraded Image in Dust Environment. J. Softw. 2014, 9, 2672–2677. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Feng, Y.; Zhao, M.; Zhang, E.; He, L. Normalised gamma transformation-based contrast-limited adaptive histogram equalisation with colour correction for sand–dust image enhancement. IET Image Process. 2019, 14, 747–756. [Google Scholar] [CrossRef]
- Xu, G.; Wang, X.; Xu, X. Single image enhancement in sandstorm weather via tensor least square. IEEE/CAA J. Autom. Sin. 2020, 7, 1649–1661. [Google Scholar] [CrossRef]
- Cheng, Y.; Jia, Z.; Lai, H.; Yang, J.; Kasabov, N.K. A Fast Sand-Dust Image Enhancement Algorithm by Blue Channel Compensation and Guided Image Filtering. IEEE Access 2020, 8, 196690–196699. [Google Scholar] [CrossRef]
- Park, T.H.; Eom, I.K. Sand-Dust Image Enhancement Using Successive Color Balance with Coincident Chromatic Histogram. IEEE Access 2021, 9, 19749–19760. [Google Scholar] [CrossRef]
- Yu, S.; Zhu, H.; Wang, J.; Fu, Z.; Xue, S.; Shi, H. Single sand-dust image restoration using information loss constraint. J. Mod. Opt. 2016, 63, 2121–2130. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Zhang, T. The method of image restoration in the environments of dust. In Proceedings of the 2010 IEEE International Conference on Mechatronics and Automation, Xi’an, China, 4–7 August 2010; pp. 294–298. [Google Scholar]
- Peng, Y.T.; Lu, Z.; Cheng, F.C.; Zheng, Y.; Huang, S.C. Image haze removal using airlight white correction, local light filter, and aerial perspective prior. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 1385–1395. [Google Scholar] [CrossRef]
- Huang, S.C.; Ye, J.H.; Chen, B.H. An advanced single-image visibility restoration algorithm for real-world hazy scenes. IEEE Trans. Ind. Electron. 2014, 62, 2962–2972. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Liu, L.; Chen, G.; Yue, H. Visibility restoration of single image captured in dust and haze weather conditions. Multidimens. Syst. Signal Process. 2020, 31, 619–633. [Google Scholar] [CrossRef]
- Kim, S.E.; Park, T.H.; Eom, I.K. Fast single image dehazing using saturation based transmission map estimation. IEEE Trans. Image Process. 2019, 29, 1985–1998. [Google Scholar] [CrossRef]
- Cai, B.; Xu, X.; Jia, K.; Qing, C.; Tao, D. Dehazenet: An end-to-end system for single image haze removal. IEEE Trans. Image Process. 2016, 25, 5187–5198. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Li, H.; Fan, Y.L.; Chen, R. Single image haze removal via region detection network. IEEE Trans. Multimed. 2019, 21, 2545–2560. [Google Scholar] [CrossRef]
- Li, C.; Guo, C.; Guo, J.; Han, P.; Fu, H.; Cong, R. PDR-Net: Perception-inspired single image dehazing network with refinement. IEEE Trans. Multimed. 2019, 22, 704–716. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar] [PubMed]
- Liu, P.J.; Horng, S.J.; Lin, J.S.; Li, T. Contrast in haze removal: Configurable contrast enhancement model based on dark channel prior. IEEE Trans. Image Process. 2018, 28, 2212–2227. [Google Scholar] [CrossRef]
- Ling, Z.; Gong, J.; Fan, G.; Lu, X. Optimal transmission estimation via fog density perception for efficient single image defogging. IEEE Trans. Multimed. 2017, 20, 1699–1711. [Google Scholar] [CrossRef]
- Galdran, A.; Pardo, D.; Picón, A.; Alvarez-Gila, A. Automatic red-channel underwater image restoration. J. Vis. Commun. Image Represent. 2015, 26, 132–145. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Wang, Y.; Huang, D.; Liotta, A.; Perra, C. Enhancement of underwater images with statistical model of background light and optimization of transmission map. IEEE Trans. Broadcast. 2020, 66, 153–169. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Huang, Y.; Zeng, D.; Zhang, X.P.; Ding, X. A fusion-based enhancing approach for single sandstorm image. In Proceedings of the 2014 IEEE 16th International Workshop on Multimedia Signal Processing (MMSP), Jakarta, Indonesia, 22–24 September 2014; pp. 1–5. [Google Scholar]
- Peng, Y.T.; Cao, K.; Cosman, P.C. Generalization of the dark channel prior for single image restoration. IEEE Trans. Image Process. 2018, 27, 2856–2868. [Google Scholar] [CrossRef]
- Shi, Z.; Feng, Y.; Zhao, M.; Zhang, E.; He, L. Let you see in sand dust weather: A method based on halo-reduced dark channel prior dehazing for sand-dust image enhancement. IEEE Access 2019, 7, 116722–116733. [Google Scholar] [CrossRef]
- Gao, G.; Lai, H.; Jia, Z.; Liu, Y.; Wang, Y. Sand-dust image restoration based on reversing the blue channel prior. IEEE Photonics J. 2020, 12, 1–16. [Google Scholar] [CrossRef]
- Cheng, Y.; Jia, Z.; Lai, H.; Yang, J.; Kasabov, N.K. Blue channel and fusion for sandstorm image enhancement. IEEE Access 2020, 8, 66931–66940. [Google Scholar] [CrossRef]
- Tan, R.T. Visibility in bad weather from a single image. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar]
- Levin, A.; Lischinski, D.; Weiss, Y. A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 30, 228–242. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Sun, J.; Tang, X. Guided image filtering. In Computer Vision—ECCV 2010, Proceedings of the European Conference on Computer Vision, Heraklion, Greece, 5–11 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–14. [Google Scholar]
- Chang, Y.; Jung, C.; Ke, P.; Song, H.; Hwang, J. Automatic contrast-limited adaptive histogram equalization with dual gamma correction. IEEE Access 2018, 6, 11782–11792. [Google Scholar] [CrossRef]
- Aboshosha, S.; Zahran, O.; Dessouky, M.I.; Abd El-Samie, F.E. Resolution and quality enhancement of images using interpolation and contrast limited adaptive histogram equalization. Multimed. Tools Appl. 2019, 78, 18751–18786. [Google Scholar] [CrossRef]
- Hautiere, N.; Tarel, J.P.; Aubert, D.; Dumont, E. Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Anal. Stereol. 2008, 27, 87–95. [Google Scholar] [CrossRef]
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 2012, 20, 209–212. [Google Scholar] [CrossRef]
- Moorthy, A.K.; Bovik, A.C. Blind Image Quality Assessment: From Natural Scene Statistics to Perceptual Quality. IEEE Trans. Image Process. 2011, 20, 3350–3364. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gu, K.; Li, X.; Zhang, Y. Blind image quality assessment by natural scene statistics and perceptual characteristics. In ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM); Association for Computing Machinery: New York, NY, USA, 2020; Volume 16, pp. 1–91. [Google Scholar]
- Kasabov, N.K. Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence; Springer: New York, NY, USA, 2019. [Google Scholar]
Method | e | NIQE | DIIVINE | NPQI | ||
---|---|---|---|---|---|---|
TFO [9] | 0.4268 | 0.0693 | 1.5123 | 3.5329 | 32.6236 | 10.3987 |
NGT [11] | 0.4268 | 0.0693 | 1.5123 | 3.3223 | 26.7959 | 9.5502 |
BCGF [13] | 0.8281 | 0.3943 | 2.8015 | 3.3952 | 29.9300 | 9.3376 |
AWC [17] | 0.8281 | 0.3943 | 2.8015 | 3.3859 | 27.5216 | 9.8819 |
VRSI [19] | 0.4074 | 0.0002 | 2.0769 | 3.445 | 31.4305 | 9.8026 |
SBT [20] | 0.7134 | 0.0011 | 1.6713 | 3.4191 | 27.1865 | 11.7016 |
FBE [29] | 0.9944 | 0.3065 | 2.1572 | 3.3427 | 28.7320 | 9.6831 |
GDCP [30] | 0.7125 | 0.0132 | 1.5251 | 3.4118 | 30.1233 | 10.9681 |
HDCP [31] | 0.7485 | 0.0054 | 4.4502 | 3.6401 | 27.6498 | 10.2809 |
RBCP [32] | 0.9136 | 0.0023 | 1.4073 | 3.6153 | 31.9274 | 12.3408 |
Proposed | 0.7808 | 0.0231 | 2.1968 | 3.311 | 27.6903 | 9.5006 |
Method | e | NIQE | DIIVINE | NPQI | ||
---|---|---|---|---|---|---|
TFO [9] | 1.7826 | 0.0611 | 1.7884 | 3.8503 | 35.0397 | 11.3340 |
NGT [11] | 0.8204 | 0.00001 | 1.9330 | 3.7331 | 26.5634 | 11.1022 |
BCGF [13] | 2.9887 | 0.6527 | 3.1582 | 3.7324 | 26.5031 | 10.8567 |
AWC [17] | 1.9980 | 0.1666 | 1.5084 | 3.9112 | 27.5216 | 12.6198 |
VRSI [19] | 1.3441 | 0.1070 | 1.7008 | 3.8898 | 33.4292 | 11.7494 |
SBT [20] | 2.1681 | 0.0038 | 1.8638 | 3.7687 | 29.7283 | 11.9398 |
FBE [29] | 2.6453 | 0.221 | 2.3218 | 3.7060 | 26.5445 | 10.7949 |
GDCP [30] | 1.7376 | 0.1066 | 1.7405 | 3.8393 | 29.3818 | 12.1313 |
HDCP [31] | 2.2070 | 0.0566 | 4.6496 | 4.0680 | 24.8841 | 11.6375 |
RBCP [32] | 1.3951 | 0.1299 | 1.6007 | 3.9928 | 34.2842 | 12.3572 |
Proposed | 2.4519 | 0.0780 | 2.3671 | 3.7154 | 25.3551 | 10.7368 |
Method | 500 × 300 | 640 × 480 | 1200 × 800 | 2000 × 1500 | 3648 × 1824 |
---|---|---|---|---|---|
TFO [9] | 0.0416 | 0.0977 | 0.4166 | 2.6107 | 9.1139 |
NGT [11] | 0.6134 | 0.7759 | 1.3610 | 3.4490 | 7.1490 |
BCGF [13] | 0.3669 | 0.5213 | 1.3794 | 4.1963 | 9.5850 |
AWC [17] | 0.3729 | 0.5819 | 2.5781 | 34.183 | 61.833 |
VRSI [19] | 0.6609 | 1.4398 | 4.6200 | 13.978 | 31.675 |
FBE [29] | 1.1384 | 1.6348 | 3.6335 | 10.166 | 21.727 |
GDCP [30] | 2.4017 | 4.3347 | 13.602 | 36.702 | 89.085 |
HDCP [31] | 4.5432 | 7.8935 | 24.229 | 72.765 | 165.34 |
RBCP [32] | 0.7722 | 1.5918 | 6.8674 | 35.4307 | 151.25 |
Proposed | 1.0625 | 1.6491 | 4.8029 | 13.307 | 32.021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, F.; Jia, Z.; Lai, H.; Song, S.; Wang, J. Sand Dust Images Enhancement Based on Red and Blue Channels. Sensors 2022, 22, 1918. https://doi.org/10.3390/s22051918
Shi F, Jia Z, Lai H, Song S, Wang J. Sand Dust Images Enhancement Based on Red and Blue Channels. Sensors. 2022; 22(5):1918. https://doi.org/10.3390/s22051918
Chicago/Turabian StyleShi, Fei, Zhenhong Jia, Huicheng Lai, Sensen Song, and Junnan Wang. 2022. "Sand Dust Images Enhancement Based on Red and Blue Channels" Sensors 22, no. 5: 1918. https://doi.org/10.3390/s22051918
APA StyleShi, F., Jia, Z., Lai, H., Song, S., & Wang, J. (2022). Sand Dust Images Enhancement Based on Red and Blue Channels. Sensors, 22(5), 1918. https://doi.org/10.3390/s22051918