Spectral Diagnostic Model for Agricultural Robot System Based on Binary Wavelet Algorithm
<p>Agricultural robot system of hyperspectral imager.</p> "> Figure 2
<p>Spectral graphs of 6 samples.</p> "> Figure 3
<p>Significant analysis chart of nitrogen, phosphorus and potassium contents in maize under different nitrogen application treatments: (<b>a</b>) Significance results of nitrogen content in maize; (<b>b</b>) Significance results of phosphorus content in maize; (<b>c</b>) Significance results of potassium content in maize. Note: In the bar chart, “a, b, c” indicates that <span class="html-italic">p <</span> 0.05, they are arranged from large to small. Different letters indicate significant, and the same letters indicate insignificant.</p> "> Figure 4
<p>(<b>a</b>) Db<sub>5</sub> wavelet analysis-low frequency information graph (<b>b</b>) Db<sub>5</sub> wavelet analysis-high frequency information graph.</p> "> Figure 5
<p>Correlation analysis of nitrogen, phosphorus and potassium contents with db<sub>5</sub> low-frequency wavelet coefficients (A<sub>5</sub>) and high frequency wavelet coefficients (D<sub>5</sub>). (<b>a</b>) Correlation curve between nitrogen content and low frequency A<sub>5</sub> wavelet coefficients. (<b>b</b>) Correlation curve between nitrogen content and D<sub>5</sub> high frequency wavelet coefficient. (<b>c</b>) Correlation curve between phosphorus content and low frequency A<sub>5</sub> wavelet coefficients. (<b>d</b>) Correlation curve between phosphorus content and high frequency D<sub>5</sub> wavelet coefficients. (<b>e</b>) Correlation curve between potassium content and low frequency information A<sub>5</sub>. (<b>f</b>) Correlation curve between potassium content and high frequency information D<sub>5</sub>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Method of Obtaining Sweet Corn Samples
2.2. Determination of Nutrient Elements and Acquisition of Hyperspectral Data
2.3. Extraction of Hyperspectral Characteristic Variables
2.4. Binary Wavelet Analysis
2.5. Modeling Method and Accuracy Verification
3. Results and Discussion
3.1. Changes of Nitrogen, Phosphorus and Potassium Contents under Different Nitrogen Application Treatments
3.2. Correlation Analysis and Diagnostic Model of Nitrogen, Phosphorus and Potassium Contents and Spectral Characteristic Variables in Sweet Maize
3.3. Binary Wavelet Modeling
3.4. Comparison between Spectral Characteristic Variable Modeling Results and Binary Wavelet Modeling Results
4. Conclusions
- (1)
- With the increase in the nitrogen application rate, the nitrogen content in maize leaves increased first and then decreased, indicating that an appropriate increase in the nitrogen application rate could promote the absorption and accumulation of nitrogen in maize leaves, while a high nitrogen application rate could inhibit the accumulation of nitrogen in maize leaves, which significantly decreased the nitrogen accumulation rate and reduced the utilization rate of nitrogen. The decrease in the phosphorus content in maize indicated that with the increase in the nitrogen application rate, the accumulation of phosphorus in maize decreased rapidly at first and then at a decreasing rate. The decrease in the potassium content in maize indicated that the application of a small amount of nitrogen fertilizer had little effect on the absorption and accumulation of potassium in maize, and the application of a high amount of nitrogen would inhibit the absorption of potassium and make the accumulation decrease rapidly.
- (2)
- Binary wavelet can effectively improve the sensitivity of the spectrum to nitrogen, phosphorus and potassium contents of sweet corn and then improve the comprehensive performance of the model. Compared with the method of constructing spectral characteristic variables and vegetation incidices, it can effectively integrate the beneficial weak information in spectral data and suppress the influence of high-frequency noise. Compared with the parabola model based on Rr and the partial least squares regression model based on the binary wavelet high-frequency sensitivity coefficient, the comprehensive performance of the neural network nonlinear model based on the binary wavelet high-frequency sensitivity coefficient improved by 28.14% and 7.71%, respectively. Compared with the linear and partial least squares regression diagnosis models based on the high frequency sensitivity coefficient of binary wavelet, the comprehensive performance of the neural network nonlinear model based on the high frequency sensitivity coefficient of the binary wavelet improved by 14.42% and 2.80%, respectively. Compared with the parabola based on SDB as the independent variable and the partial least squares regression potassium content diagnosis model based on the binary wavelet high-frequency sensitivity coefficient, the comprehensive performance of the neural network nonlinear model based on the binary wavelet high frequency sensitivity coefficient is improved by 48.84% and 3.13%, respectively.
- (3)
- The chemical measurement method by using traditional destructive sampling of sweet corn nitrogen, phosphorus and potassium content and is sensitive to the high-frequency wavelet coefficient of building a neural network nonlinear sweet corn nitrogen, phosphorus and potassium content of the diagnosis model has good comprehensive performance, which can realize the rapid and nondestructive testing of sweet corn nitrogen, phosphorus and potassium content.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reina, G.; Milella, A.; Rouveure, R.; Nielsen, M.; Worst, R.; Blas, M.R. Ambient awareness for agricultural robotic vehicles. Biosyst. Eng. 2016, 146, 114–132. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Li, J.; Liu, Y.; Wang, J. Building and optimization of 3D semantic map based on Lidar and camera fusion. Neurocomputing 2020, 409, 394–407. [Google Scholar] [CrossRef]
- Li, J.; Qin, H.; Wang, J.; Li, J. OpenStreetMap-based autonomous navigation for the four wheel-legged robot via 3D-Lidar and CCD camera. IEEE Trans. Ind. Electron. 2021, 69, 2708–2717. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Peng, H.; Hu, Y.; Su, H. Fuzzy-torque approximation-enhanced sliding mode control for lateral stability of mobile robot. IEEE Trans. Syst. Man Cybern. Syst. 2021, 1–10. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Peng, H.; Zhang, L.; Hu, Y.; Su, H. Neural fuzzy approximation enhanced autonomous tracking control of the wheel-legged robot under uncertain physical interaction. Neurocomputing 2020, 410, 342–353. [Google Scholar] [CrossRef]
- Yang, C.; Peng, G.; Cheng, L.; Na, J.; Li, Z. Force sensorless admittance control for teleoperation of uncertain robot manipulator using neural networks. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 3282–3292. [Google Scholar] [CrossRef]
- Yang, C.; Huang, D.; He, W.; Cheng, L. Neural control of robot manipulators with trajectory tracking constraints and input saturation. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 4231–4242. [Google Scholar] [CrossRef]
- Peng, G.; Chen, C.L.; Yang, C. Neural Networks Enhanced Optimal Admittance Control of Robot-Environment Interaction Using Reinforcement Learning. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–11. [Google Scholar] [CrossRef]
- Řezník, T.; Herman, L.; Klocová, M.; Leitner, F.; Pavelka, T.; Leitgab, S.; Trojanová, K.; Štampach, R.; Moshou, D.; Mouazen, A.M.; et al. Towards the development and verification of a 3d-based advanced optimized farm machinery trajectory algorithm. Sensors 2021, 21, 2980. [Google Scholar] [CrossRef]
- Hameed, I.A. Intelligent coverage path planning for agricultural robots and autonomous machines on three-dimensional terrain. J. Intell. Robot. Syst. 2014, 74, 965–983. [Google Scholar] [CrossRef] [Green Version]
- Fountas, S.; Mylonas, N.; Malounas, I.; Rodias, E.; Santos, C.H.; Pekkeriet, E. Agricultural robotics for field operations. Sensors 2020, 20, 2672. [Google Scholar] [CrossRef] [PubMed]
- Baltazar, A.R.; Santos, F.N.; Moreira, A.P.; Valente, A.; Cunha, J.B. Smarter Robotic Sprayer System for Precision Agriculture. Electronics 2021, 10, 2061. [Google Scholar] [CrossRef]
- Liu, L.; Peng, Z.; Zhang, B.; Wei, Z. Canopy Nitrogen Concentration Monitoring Techniques of Summer Corn Based on Canopy Spectral Information. Sensors 2019, 19, 4123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Zhao, S.; Zhang, C.; Su, Z.; Wang, L.; Zhao, Y. Forecasting model for nitrogen content of maize canopy during seedlingstage in cold region based on imaging spectral technique. Trans. Chin. Soc. Agric. Eng. 2016, 32, 149–154. [Google Scholar]
- Song, X.; Gao, Y.; Liu, Z.; Zhang, M.; Wan, Y.; Yu, X.; Liu, W.; Li, L. Development of a predictive tool for rapid assessment of soil total nitrogen in wheat-corn double cropping system with hyperspectral data. Environ. Pollut. Bioavailab. 2019, 31, 272–281. [Google Scholar] [CrossRef]
- Charles, A.L.; Cato, K.; Huang, T.; Chang, Y.; Ciou, J.; Chang, J.; Lin, H. Functional properties of arrowroot starch in cassava and sweet potato composite starches. Food Hydrocoll. 2016, 53, 187–191. [Google Scholar] [CrossRef]
- Cutulle, M.A.; Armel, G.R.; Kopsell, D.A.; Wilson, H.P.; Brosnan, J.T.; Vargas, J.J.; Hines, T.E.; Koepke-Hill, R.M. Several pesticides influence the nutritional content of sweet corn. J. Agric. Food Chem. 2018, 66, 3086–3092. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, H.; Gao, D.; Qiao, L.; Liu, N.; Li, M.; Zhang, Y. Detection of canopy chlorophyll content of corn based on continuous wavelet transform analysis. Remote Sens. 2020, 12, 2741. [Google Scholar] [CrossRef]
- Mananze, S.; Pôças, I.; Cunha, M. Retrieval of maize leaf area index using hyperspectral and multispectral data. Remote Sens. 2018, 10, 1942. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Cui, Y.; Ma, C.; Niu, Q.; Li, J. Hyperspectral inversion of maize biomass coupled with plant height data. Crop Sci. 2021, 61, 2067–2079. [Google Scholar] [CrossRef]
- Berger, K.; Verrelst, J.; Féret, J.; Wang, Z.; Wocher, M.; Strathmann, M.; Danner, M.; Mauser, W.; Hank, T. Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions. Remote Sens. Environ. 2020, 242, 111758. [Google Scholar] [CrossRef]
- Silva-Perez, V.; Molero, G.; Serbin, S.P.; Condon, A.G.; Reynolds, M.P.; Furbank, R.T.; Evans, J.R. Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat. J. Exp. Bot. 2018, 69, 483–496. [Google Scholar] [CrossRef] [Green Version]
- Ren, G.; Ning, J.; Zhang, Z. Multi-variable selection strategy based on near-infrared spectra for the rapid description of dianhong black tea quality. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 245, 118918. [Google Scholar] [CrossRef]
- Xu, X.; Li, Z.; Yang, X.; Yang, G.; Teng, C.; Zhu, H.; Liu, S. Predicting leaf chlorophyll content and its nonuniform vertical distribution of summer maize by using a radiation transfer model. J. Appl. Remote Sens. 2019, 13, 034505. [Google Scholar] [CrossRef]
- Gu, X.; Cai, W.; Fan, Y.; Ma, Y.; Zhao, X.; Zhang, C. Estimating foliar anthocyanin content of purple corn via hyperspectral model. Food Sci. Nutr. 2018, 6, 572–578. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Dou, Z.; Zuo, X.; Lei, Y.; Li, J.; Zhao, X.; Zhai, X.; Pan, X.; Li, W. Hyperspectral Inversion of Phragmites Communis Carbon, Nitrogen, and Phosphorus Stoichiometry Using Three Models. Remote Sens. 2020, 12, 1998. [Google Scholar] [CrossRef]
- Liu, W.; Yu, Q.; Niu, T.; Yang, L.; Liu, H. Inversion of Soil Heavy Metal Content Based on Spectral Characteristics of Peach Trees. Forests 2021, 12, 1208. [Google Scholar] [CrossRef]
- Guo, F.; Xu, Z.; Ma, H.; Liu, X.; Yang, Z.; Tang, S. A Comparative Study of the Hyperspectral Inversion Models Based on the PCA for Retrieving the Cd Content in the Soil. Spectrosc. Spectr. Anal. 2021, 41, 1625–1630. [Google Scholar]
- Liang, L.; Di, L.; Huang, T.; Wang, J.; Lin, L.; Wang, L.; Yang, M. Estimation of leaf nitrogen content in wheat using new hyperspectral indices and a random forest regression algorithm. Remote Sens. 2018, 10, 1940. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.M.; Jiang, M.J. Comparison of inversion method of maize leaf area index based on UAV hyperspectral remote sensing. Multimed. Tools Appl. 2020, 79, 16385–16401. [Google Scholar] [CrossRef]
- Wei, L.; Yuan, Z.; Zhong, Y.; Yang, L.; Hu, X.; Zhang, Y. An improved gradient boosting regression tree estimation model for soil heavy metal (Arsenic) pollution monitoring using hyperspectral remote sensing. Appl. Sci. 2019, 9, 1943. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Yuan, Z.; Wang, Z.; Zhao, L.; Zhang, Y.; Lu, X.; Cao, L. Hyperspectral inversion of soil organic matter content based on a combined spectral index model. Sensors 2020, 20, 2777. [Google Scholar] [CrossRef]
- Wang, J.; Li, X. Comparison on quantitative inversion of characteristic ions in salinized soils with hyperspectral based on support vector regression and partial least squares regression. Eur. J. Remote Sens. 2020, 53, 340–348. [Google Scholar] [CrossRef]
- Wu, T.; Yu, J.; Lu, J.; Zou, X.; Zhang, W. Research on inversion model of cultivated soil moisture content based on hyperspectral imaging analysis. Agriculture 2020, 10, 292. [Google Scholar] [CrossRef]
- Han, L.; Chen, R.; Zhu, H.; Zhao, Y.; Liu, Z.; Huo, H. Estimating soil arsenic content with visible and near-infrared hyperspectral reflectance. Sustainability 2020, 12, 1476. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Feng, S.; Du, W.; Wang, D.; Guo, Z.; Xing, S.; Jin, Z.; Cao, Y.; Xu, T. A study of nitrogen deficiency inversion in rice leaves based on the hyperspectral reflectance differential. Front. Plant Sci. 2020, 11, 1758. [Google Scholar] [CrossRef]
- Fan, L.L.; Zhao, J.L.; Xu, X.G.; Liang, D.; Yang, G.; Feng, H.K.; Yang, H.; Wang, Y.L.; Chen, G.; Wei, P.F. Hyperspectral-based Estimation of Leaf Nitrogen Content in Corn Using Optimal Selection of Multiple Spectral Variables. Sensors 2019, 19, 2898. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Jiang, Q.; Zhang, Z.; Shi, P.; Xu, Y.; Liu, B.; Xi, J.; Chang, S. Hyperspectral inversion of petroleum hydrocarbon contents in soil based on continuum removal and wavelet packet decomposition. Sustainability 2020, 12, 4218. [Google Scholar] [CrossRef]
- Gu, X.; Wang, Y.; Sun, Q.; Yang, G.; Zhang, C. Hyperspectral inversion of soil organic matter content in cultivated land based on wavelet transform. Comput. Electron. Agric. 2019, 167, 10505. [Google Scholar] [CrossRef]
- Li, L.J.; Yue, Y.B.; Wang, Y.C.; Zhao, Z.Y.; Li, R.J.; Nie, K.Y.; Yuan, L. The Quantitative Study on Chlorophyll Content of Hylocereus polyrhizus Based on Hyperspectral Analysis. Spectrosc. Spectr. Anal. 2021, 41, 3538–3544. [Google Scholar]
- Zhang, T.; Yu, L.; Yi, J.; Nie, Y.; Zhou, Y. Determination of Soil Organic Matter Content Based on HyperspectralWavelet Energy Features. Spectrosc. Spectr. Anal. 2019, 39, 3217–3222. [Google Scholar]
- Wang, Y.C.; Yang, X.F.; Zhao, Q.C.; Gu, X.H.; Guo, C.; Liu, Y.P. Quantitative Inversion of Soil Organic Matter Content in Northern Alluvial Soil Based on Binary Wavelet Transform. Spectrosc. Spectr. Anal. 2019, 39, 2855–2861. [Google Scholar]
- Huang, Y.; Tian, Q.; Wang, L.; Geng, J.; Lyu, C. Estimating canopy leaf area index in the late stages of wheat growth using continuous wavelet transform. J. Appl. Remote Sens. 2014, 8, 083517. [Google Scholar] [CrossRef]
- Yang, B.; Zhu, Y.; Wang, M.; Ning, J. A model for yellow tea polyphenols content estimation based on multi-feature fusion. IEEE Access 2019, 7, 180054–180063. [Google Scholar] [CrossRef]
- Lu, R.K. Methods for Soil Agrochemical Analysis; China Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Mohan, B.K.; Porwal, A. Hyperspectral image processing and analysis. Curr. Sci. 2015, 108, 833–841. [Google Scholar]
- Rasti, B.; Koirala, B.; Scheunders, P.; Ghamisi, P. How Hyperspectral Image Unmixing and Denoising Can Boost Each Other. Remote Sens. 2020, 12, 1728. [Google Scholar] [CrossRef]
- Wu, W.B.; Li, J.Y.; Zhang, Z.B.; Ling, C.J.; Lin, X.K.; Chang, X.L. Estimation model of LAI and nitrogen content in tea tree based on hyperspectral image. Trans. Chin. Soc. Agric. Eng. 2018, 34, 195–201. [Google Scholar]
- Huang, L.; Song, F.; Huang, W.; Zhao, J.; Ye, H.; Yang, X.; Liang, D. New Triangle Vegetation Indices for Estimating Leaf Area Index on Maize. J. Indian Soc. Remote Sens. 2018, 46, 1907–1914. [Google Scholar] [CrossRef]
- Mao, Z.H.; Deng, L.; Duan, F.Z.; Li, X.J.; Qiao, D.Y. Angle effects of vegetation indices and the influence on prediction of SPAD values in soybean and maize. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102198. [Google Scholar] [CrossRef]
- Sharifi, A. Using sentinel-2 data to predict nitrogen uptake in maize crop. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2656–2662. [Google Scholar] [CrossRef]
- Xu, C.F.; Li, G.K. Public Basic Course Series of Postgraduate Teaching Books: Practical Wavelet Method, 3rd ed.; Huazhong University of Science and Technology Press: Wuhan, China, 2009. [Google Scholar]
- Sáfadi, T.; Kang, M.; Leite, I.C.C.; Vidaković, B. Wavelet-based spectral descriptors for detection of damage in sunflower seeds. Int. J. Wavelets Multiresolution Inf. Process. 2016, 14, 1650027. [Google Scholar] [CrossRef]
Types of Spectral Characteristic Variables | Spectral Characteristic Variables | Parameter Description |
---|---|---|
Spectral position variable | Amplitude of blue edge Db | Maximum first-order differential spectral values at 490–530 nm |
Location of blue edge λb/nm | The wavelength position corresponding to the blue amplitude | |
Amplitude of yellow edge Dy | Maximum first-order differential spectral values at 560–640 nm | |
Location of yellow edge λy/nm | The wavelength position corresponding to the yellow amplitude | |
Amplitude of red edge Dr | Maximum first-order differential spectral value within 680–760 nm | |
Location of red edge λr/nm | The wavelength position corresponding to the amplitude of the red side | |
Green peak reflectance Rg | Maximum first-order differential spectral value at 510–560 nm | |
Green peak position λg/nm | Wavelength position corresponding to the green peak reflectivity | |
Red valley reflectance Rr | Minimum first order differential spectral value within 650–690 nm | |
Red valley location λo/nm | Wavelength position corresponding to red Valley reflectivity | |
Spectral area variable | Blue edge area SDb | The area enclosed by the original light spectrum curve at 490–530 nm |
Yellow edge area SDy | 560–640 nm spectrum curves surround the area of original light | |
Red edge area SDr | The area enclosed by the original spectral curve within 680–760 nm | |
Green peak area SDg | The area enclosed by the original light spectrum curve in 510–560 nm | |
Vegetation index variable | VI1 = Rg/Rr | Ratio of green peak reflectance to red valley reflectance |
VI2 = (Rg − Rr)/(Rg + Rr) | Normalized values of green peak reflectance and red valley reflectance | |
VI3 = SDr/SDb | Ratio of the area of the red side to the area of the blue side | |
VI4 = SDr/SDy | Ratio of the area of the red side to the area of the yellow side | |
VI5 = (SDr − SDb)/(SDr + SDb) | The normalized value of the red-side area and the blue-side area | |
VI6 = (SDr − SDy)/(SDr + SDy) | The normalized value of the area of the red and yellow sides | |
VI7 = R800/R680 | Simple ratio index SRI | |
VI8 = (R750/R720) − 1 | Red edge model REM | |
VI9 = (R750 − R445)/(R705 − R445) | Correction of simple ratio index mSR705 | |
VI10 = (R750 − R445)/(R750 + R705 − 2 × R445) | Revised normalized difference index mND705 |
Types of Variables | Nitrogen Content | Phosphorus Content | Potassium Content |
---|---|---|---|
Db | 0.725 ** | 0.905 ** | −0.543 ** |
λb | 0.732 ** | −0.882 ** | −0.507 ** |
Dy | 0.722 ** | −0.908 ** | −0.546 ** |
λy | −0.713 ** | 0.863 ** | 0.485 ** |
Dr | 0.735 ** | −0.908 ** | −0.528 ** |
λr | 0.753 ** | −0.826 ** | −0.371 ** |
Rg | 0.722 ** | −0.908 ** | −0.546 ** |
λg | 0.735 ** | −0.880 ** | −0.495 ** |
Rr | 0.742 ** | −0.899 ** | −0.521 ** |
λr | 0.442 ** | −0.569 ** | −0.349 ** |
SDb | 0.696 ** | −0.913 ** | −0.577 ** |
SDy | −0.654 ** | 0.896 ** | 0.579 ** |
SDr | 0.734 ** | −0.901 ** | −0.519 ** |
SDg | 0.697 ** | −0.903 ** | −0.558 ** |
VI1 | 0.343 ** | −0.410 ** | −0.171 |
VI2 | −0.742 ** | 0.881 ** | 0.506 ** |
VI3 | 0.210 | −0.228 | −0.125 |
VI4 | −0.406 ** | 0.545 ** | 0.291 |
VI5 | −0.725 ** | 0.899 ** | 0.529 ** |
VI6 | 0.674 ** | −0.899 ** | −0.568 ** |
VI7 | −0.009 | 0.016 | 0.014 |
VI8 | −0.139 | 0.468 ** | 0.427 ** |
VI9 | −0.219 | 0.504 ** | 0.409 ** |
VI10 | −0.223 | 0.508 ** | 0.413 ** |
Index to Be Predicted | Spectral Characteristic Variables | Model | Coefficient of Determination of Modeling R2 (n = 48) | Validation (n = 24) | ||
---|---|---|---|---|---|---|
MRE | NRMSE | T | ||||
Nitrogen content | Rr | Linear | 0.606 | 5.18% | 0.090 | 0.8038 |
Parabolic | 0.672 | 5.39% | 0.093 | 0.7298 | ||
Index | 0.639 | 5.18% | 0.090 | 0.7643 | ||
Logarithmic | 0.631 | 5.08% | 0.090 | 0.7731 | ||
λr | Linear | 0.641 | 5.59% | 0.091 | 0.7634 | |
Parabolic | 0.667 | 9.32% | 0.132 | 0.7559 | ||
Index | 0.667 | 6.05% | 0.093 | 0.7369 | ||
Logarithmic | 0.644 | 5.58% | 0.090 | 0.7599 | ||
VI2 | Linear | 0.622 | 5.35% | 0.092 | 0.7851 | |
Parabolic | 0.665 | 5.23% | 0.090 | 0.7359 | ||
Index | 0.650 | 5.20% | 0.092 | 0.7524 | ||
Logarithmic | 0.657 | 4.71% | 0.088 | 0.7424 | ||
Phosphorus content | Dr | Linear | 0.820 | 11.78% | 0.119 | 0.6301 |
Parabolic | 0.821 | 11.83% | 0.118 | 0.6294 | ||
Index | 0.755 | 11.55% | 0.119 | 0.6784 | ||
Logarithmic | 0.812 | 18.46% | 0.186 | 0.6715 | ||
Rg | Linear | 0.820 | 11.70% | 0.119 | 0.6299 | |
Parabolic | 0.820 | 11.70% | 0.119 | 0.6299 | ||
Index | 0.755 | 11.39% | 0.118 | 0.6777 | ||
Logarithmic | 0.813 | 11.80% | 0.126 | 0.6367 | ||
SDb | Linear | 0.835 | 11.97% | 0.120 | 0.6208 | |
Parabolic | 0.835 | 12.01% | 0.121 | 0.6210 | ||
Index | 0.777 | 11.55% | 0.118 | 0.6606 | ||
Logarithmic | 0.829 | 11.89% | 0.120 | 0.6247 | ||
Potassium content | SDb | Linear | 0.310 | 12.11% | 0.132 | 1.5667 |
Parabolic | 0.432 | 10.22% | 0.112 | 1.1329 | ||
Index | 0.307 | 39.00% | 0.414 | 1.7285 | ||
Logarithmic | 0.282 | 12.32% | 0.148 | 1.7200 | ||
SDy | Linear | 0.296 | 11.68% | 0.129 | 1.6356 | |
Parabolic | 0.324 | 11.05% | 0.121 | 1.4962 | ||
Index | 0.293 | 11.39% | 0.127 | 1.6504 | ||
Logarithmic | 0.315 | 11.31% | 0.125 | 1.5389 | ||
VI6 | Linear | 0.278 | 12.83% | 0.138 | 1.7430 | |
Parabolic | 0.279 | 12.88% | 0.139 | 1.7372 | ||
Index | 0.272 | 12.47% | 0.136 | 1.7784 | ||
Logarithmic | 0.279 | 12.90% | 0.139 | 1.7373 |
Index to Be Predicted | Partial Least Squares Regression Model | Coefficient of Determination of Modeling R2 (n = 48) | Validation (n = 24) | ||
---|---|---|---|---|---|
MRE | NRMSE | T | |||
Nitrogen content | Y = 760.852 × Xdb3-D4–448 + 579.046 × Xdb3-D4–450 + 555.147 × Xdb2-D5−367 + 7.325 | 0.906 | 2.01% | 0.0228 | 0.5244 |
Phosphorus content | Y = −55.083 × Xdb3-D5–527 + 39.259 × Xdb3-D5–486 + 20.589 × Xdb3-D5–482 + 9.124 | 0.919 | 7.04% | 0.0835 | 0.5466 |
Potassium content | Y = 239.24 × Xdb2-D5–455 + 545.218 × Xdb2-D5–608 + 611.15 × Xdb2-D5–706 + 43.260 | 0.807 | 3.92% | 0.0454 | 0.5712 |
Index to Be Predicted | Coefficient of Determination of Modeling R2 (n = 48) | Validation (n = 24) | ||
---|---|---|---|---|
MRE | NRMSE | T | ||
Nitrogen content | 0.974 | 1.65% | 0.0198 | 0.4868 |
Phosphorus content | 0.969 | 9.02% | 0.1041 | 0.5313 |
Potassium content | 0.821 | 2.16% | 0.0301 | 0.5412 |
Index to Be Predicted | Model Type | Coefficient of Determination of Modeling R2 (n = 48) | MRE | NRMSE | T |
---|---|---|---|---|---|
Nitrogen content | Rr parabolic model | 0.672 | 5.39% | 0.093 | 0.7298 |
Partial least squares regression model | 0.906 | 2.01% | 0.0228 | 0.5244 | |
Neural network nonlinear model | 0.974 | 1.65% | 0.0198 | 0.4868 | |
Phosphorus content | SDb Linear model | 0.835 | 11.97% | 0.120 | 0.6208 |
Partial least squares regression model | 0.919 | 7.04% | 0.0835 | 0.5466 | |
Neural network nonlinear model | 0.969 | 9.02% | 0.1041 | 0.5313 | |
Potassium content | SDb Parabolic model | 0.432 | 10.22% | 0.112 | 1.1330 |
Partial least squares regression model | 0.807 | 3.92% | 0.0454 | 0.5984 | |
Neural network nonlinear model | 0.821 | 2.16% | 0.0301 | 0.5797 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Tang, T.; Gao, T.; Han, C.; Li, J.; Zhang, Y.; Wang, X.; Wang, J.; Feng, Y. Spectral Diagnostic Model for Agricultural Robot System Based on Binary Wavelet Algorithm. Sensors 2022, 22, 1822. https://doi.org/10.3390/s22051822
Wu W, Tang T, Gao T, Han C, Li J, Zhang Y, Wang X, Wang J, Feng Y. Spectral Diagnostic Model for Agricultural Robot System Based on Binary Wavelet Algorithm. Sensors. 2022; 22(5):1822. https://doi.org/10.3390/s22051822
Chicago/Turabian StyleWu, Weibin, Ting Tang, Ting Gao, Chongyang Han, Jie Li, Ying Zhang, Xiaoyi Wang, Jianwu Wang, and Yuanjiao Feng. 2022. "Spectral Diagnostic Model for Agricultural Robot System Based on Binary Wavelet Algorithm" Sensors 22, no. 5: 1822. https://doi.org/10.3390/s22051822
APA StyleWu, W., Tang, T., Gao, T., Han, C., Li, J., Zhang, Y., Wang, X., Wang, J., & Feng, Y. (2022). Spectral Diagnostic Model for Agricultural Robot System Based on Binary Wavelet Algorithm. Sensors, 22(5), 1822. https://doi.org/10.3390/s22051822