Performance-Cost Trade-Off in Auto-Scaling Mechanisms for Cloud Computing †
<p>A typical architecture of auto-scaling cloud systems.</p> "> Figure 2
<p>SPN model for cloud-based system.</p> "> Figure 3
<p>Evaluation method selection.</p> "> Figure 4
<p>Variation of the number of VMs.</p> "> Figure 5
<p>Scenario 1—Validation of throughput.</p> "> Figure 6
<p>Scenario 1—Validation of elastic VM usage.</p> "> Figure 7
<p>Scenario 2—Validation of throughput.</p> "> Figure 8
<p>Scenario 2—Validation of elastic VM usage.</p> "> Figure 9
<p>Service time for each value of N_WORKERS.</p> "> Figure 10
<p>SLA cost.</p> ">
Abstract
:1. Introduction
- We propose an SPN model to capture sophisticated auto-scaling mechanisms in a typical cloud computing system.The model addresses the application process, the VM instantiation mechanism, and the VM termination mechanism. The model has the main purpose of calculating the mean response time, throughput, and cost of the VMs in different auto-scaling configurations. The proposed model is an extension of our previous validated auto-scaling model for performance and cost evaluation [43].
- We adopted the GRASP optimization algorithm to investigate the most suitable model parameters. We calibrate system parameters to achieve a configuration that respects service-level agreements and optimizes the cost.The space of possible solutions includes both scenarios—public and private cloud systems. It was possible to find an adequate trade-off between performance and cost regarding the auto-scaling mechanism by combining the model and the optimization algorithm.
- We adopted the proposed methodology in a practical case study of cloud services to demonstrate the feasibility of the proposed model and optimization algorithm.We explored feasible solutions for a public cloud aiming to identify an optimized configuration in video transcoding systems.
2. Related Works
3. An Auto-Scaling Cloud Architecture
4. Proposed SPN Modeling and Optimization Algorithm
4.1. System Model
4.2. Model Metrics
4.3. Optimization Algorithm
Algorithm 1: Greedy randomized adaptive search procedure—GRASP. |
Algorithm 2: Greedy randomized construction for SPN model. |
Algorithm 3: Local search VND. |
5. Model Validation and Case Studies
5.1. Model Validation
5.2. A Case-Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Welsh, T.; Benkhelifa, E. On resilience in cloud computing: A survey of techniques across the cloud domain. ACM Comput. Surv. (CSUR) 2020, 53, 1–36. [Google Scholar] [CrossRef]
- Hogan, M.; Liu, F.; Sokol, A.; Tong, J. Nist cloud computing standards roadmap. NIST Spec. Publ. 2011, 35, 6–11. [Google Scholar]
- Sousa, E.; Maciel, P.; Medeiros, E.; Souza, D.; Lins, F.; Tavares, E. Evaluating eucalyptus virtual machine instance types: A study considering distinct workload demand. Cloud Comput. 2012, 3, 130–135. [Google Scholar]
- Yadav, A.K.; Garg, M. Docker containers versus virtual machine-based virtualization. In Emerging Technologies in Data Mining and Information Security; Springer: Singapore, 2019; pp. 141–150. [Google Scholar]
- Madhuri, T.; Sowjanya, P. Microsoft Azure v/s Amazon AWS cloud services: A comparative study. Int. J. Innov. Res. Sci. Eng. Technol. 2016, 5, 3904–3907. [Google Scholar]
- Mell, P.; Grance, T. The NIST Definition of Cloud Computing; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2011.
- de Assunção, M.D.; Cardonha, C.H.; Netto, M.A.; Cunha, R.L. Impact of user patience on auto-scaling resource capacity for cloud services. Future Gener. Comput. Syst. 2016, 55, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Chen, Q.; Luo, H. Automatic scaling of internet applications for cloud computing services. IEEE Trans. Comput. 2014, 63, 1111–1123. [Google Scholar]
- Biswas, A.; Majumdar, S.; Nandy, B.; El-Haraki, A. An Auto-Scaling Framework for Controlling Enterprise Resources on Clouds. In Proceedings of the 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), Shenzhen, China, 4–7 May 2015; pp. 971–980. [Google Scholar]
- Lorido-Botrán, T.; Miguel-Alonso, J.; Lozano, J.A. Auto-Scaling Techniques for Elastic Applications in Cloud Environments; Tech. Rep. EHU-KAT-IK-09; Department of Computer Architecture and Technology; University of Basque: Biscaia, Spain, 2012; Volume 12. [Google Scholar]
- Galante, G.; de Bona, L.C.E. A survey on cloud computing elasticity. In Proceedings of the 2012 IEEE Fifth International Conference on Utility and Cloud Computing (UCC), Chicago, IL, USA, 5–8 November 2012; pp. 263–270. [Google Scholar]
- Moore, L.R.; Bean, K.; Ellahi, T. Transforming reactive auto-scaling into proactive auto-scaling. In Proceedings of the 3rd International Workshop on Cloud Data and Platforms; ACM: New York, NY, USA, 2013; pp. 7–12. [Google Scholar]
- AmazonAWS Amazon Web Services. Available online: https://aws.amazon.com (accessed on 23 December 2015).
- Netto, M.A.; Cardonha, C.; Cunha, R.L.; Assunçao, M.D. Evaluating auto-scaling strategies for cloud computing environments. In Proceedings of the 2014 IEEE 22nd International Symposium on Modelling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS), Paris, France, 9–11 September 2014; pp. 187–196. [Google Scholar]
- Badouel, E.; Bernardinello, L.; Darondeau, P. Petri Net Synthesis; Springer: Heidelberg, Germany, 2015. [Google Scholar]
- Dantas, J.; Araujo, E.; Maciel, P.; Matos, R.; Teixeira, J. Estimating capacity-oriented availability in cloud systems. Int. J. Comput. Sci. Eng. 2020, 22, 466–476. [Google Scholar] [CrossRef]
- Ajmone Marsan, M.; Conte, G.; Balbo, G. A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems. ACM Trans. Comput. Syst. (TOCS) 1984, 2, 93–122. [Google Scholar] [CrossRef]
- Marsan, M.A.; Balbo, G.; Conte, G.; Donatelli, S.; Franceschinis, G. Modelling with Generalized Stochastic Petri Nets; John Wiley & Sons, Inc.: New York, NY, USA, 1994. [Google Scholar]
- Marsan, M.A.; Balbo, G.; Conte, G.; Donatelli, S.; Franceschinis, G. Modelling with generalized stochastic petri nets. ACM Sigmetrics Perform. Eval. Rev. 1998, 26, 2. [Google Scholar] [CrossRef]
- German, R. Performance Analysis of Communication Systems with Non-Markovian Stochastic Petri Nets; John Wiley & Sons, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Tuffin, B.; Choudhary, P.; Hirel, C.; Trivedi, K. Simulation versus analytic-numeric methods: A petri net example. In Proceedings of the 2nd VALUETOOLS Conference, Nantes, France, 22–27 October 2007. [Google Scholar]
- Desrochers, A.; Al-Jaar, R.; Society, I.C.S. Applications of Petri Nets in Manufacturing Systems: Modeling, Control, and Performance Analysis; IEEE Press: New York, NY, USA, 1995. [Google Scholar]
- Silva, F.A.; Kosta, S.; Rodrigues, M.; Oliveira, D.; Maciel, T.; Mei, A.; Maciel, P. Mobile cloud performance evaluation using stochastic models. IEEE Trans. Mob. Comput. 2017, 17, 1134–1147. [Google Scholar] [CrossRef]
- Pinheiro, T.; Silva, F.A.; Fé, I.; Oliveira, D.; Maciel, P. Performance and Resource Consumption Analysis of Elastic Systems on Public Clouds. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 2115–2120. [Google Scholar]
- Rodrigues, L.; Endo, P.T.; Silva, F.A. Stochastic Model for Evaluating Smart Hospitals Performance. In Proceedings of the 2019 IEEE Latin-American Conference on Communications (LATINCOM), Salvador, Brazil, 11–13 November 2019; pp. 1–6. [Google Scholar]
- Ferreira, L.; da Silva Rocha, E.; Monteiro, K.H.C.; Santos, G.L.; Silva, F.A.; Kelner, J.; Sadok, D.; Bastos Filho, C.J.; Rosati, P.; Lynn, T.; et al. Optimizing Resource Availability in Composable Data Center Infrastructures. In Proceedings of the 2019 9th Latin-American Symposium on Dependable Computing (LADC), Natal, Brazil, 19–21 November 2019; pp. 1–10. [Google Scholar]
- Santos, G.L.; Gomes, D.; Kelner, J.; Sadok, D.; Silva, F.A.; Endo, P.T.; Lynn, T. The internet of things for healthcare: Optimising e-health system availability in the fog and cloud. Int. J. Comput. Sci. Eng. 2020, 21, 615–628. [Google Scholar] [CrossRef]
- Silva, F.A.; Fé, I.; Gonçalves, G. Stochastic models for performance and cost analysis of a hybrid cloud and fog architecture. J. Supercomput. 2020, 77, 1537–1561. [Google Scholar] [CrossRef]
- Carvalho, D.; Rodrigues, L.; Endo, P.T.; Kosta, S.; Silva, F.A. Mobile Edge Computing Performance Evaluation using Stochastic Petri Nets. In Proceedings of the 2020 IEEE Symposium on Computers and Communications (ISCC), Rennes, France, 7–10 July 2020; pp. 1–6. [Google Scholar]
- da Silva Pinheiro, T.F.; Silva, F.A.; Fé, I.; Kosta, S.; Maciel, P. Performance prediction for supporting mobile applications’ offloading. J. Supercomput. 2018, 74, 4060–4103. [Google Scholar] [CrossRef]
- Silva, F.A.; Rodrigues, M.; Maciel, P.; Kosta, S.; Mei, A. Planning mobile cloud infrastructures using stochastic petri nets and graphic processing units. In Proceedings of the 2015 IEEE 7th International Conference on Cloud Computing Technology and Science (CloudCom), Vancouver, BC, Canada, 30 November–3 December 2015; pp. 471–474. [Google Scholar]
- Pinheiro, T.; Silva, F.A.; Fe, I.; Kosta, S.; Maciel, P. Performance and Data Traffic Analysis of Mobile Cloud Environments. In Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; pp. 4100–4105. [Google Scholar]
- Costa, I.; Araujo, J.; Dantas, J.; Campos, E.; Silva, F.A.; Maciel, P. Availability Evaluation and Sensitivity Analysis of a Mobile Backend-as-a-service Platform. Qual. Reliab. Eng. Int. 2016, 32, 2191–2205. [Google Scholar] [CrossRef]
- Matos, R.; Maciel, P.R.; Silva, R.M. Sensitive GRASP: Combinatorial optimisation of composite web services guided by sensitivity analysis. Int. J. Web Grid Serv. 2016, 12, 63–80. [Google Scholar] [CrossRef]
- Mansouri, Y.; Toosi, A.N.; Buyya, R. Cost optimization for dynamic replication and migration of data in cloud data centers. IEEE Trans. Cloud Comput. 2017, 7, 705–718. [Google Scholar] [CrossRef]
- Tos, U.; Mokadem, R.; Hameurlain, A.; Ayav, T. Achieving query performance in the cloud via a cost-effective data replication strategy. Soft Comput. 2021, 25, 5437–5454. [Google Scholar] [CrossRef]
- Edwin, E.B.; Umamaheswari, P.; Thanka, M.R. An efficient and improved multi-objective optimized replication management with dynamic and cost aware strategies in cloud computing data center. Clust. Comput. 2019, 22, 11119–11128. [Google Scholar] [CrossRef]
- Marcus, R.; Papaemmanouil, O.; Semenova, S.; Garber, S. NashDB: An end-to-end economic method for elastic database fragmentation, replication, and provisioning. In Proceedings of the 2018 International Conference on Management of Data, Houston, TX, USA, 10–15 June 2018; pp. 1253–1267. [Google Scholar]
- Wei, Y.; Kudenko, D.; Liu, S.; Pan, L.; Wu, L.; Meng, X. A reinforcement learning based auto-scaling approach for SaaS providers in dynamic cloud environment. Math. Probl. Eng. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Hwang, K.; Bai, X.; Shi, Y.; Li, M.; Chen, W.G.; Wu, Y. Cloud performance modeling with benchmark evaluation of elastic scaling strategies. IEEE Trans. Parallel Distrib. Syst. 2015, 27, 130–143. [Google Scholar] [CrossRef]
- Ribas, M.; Furtado, C.; Barroso, G.; Lima, A.S.; Souza, N.; Moura, A. Modeling the use of spot instances for cost reduction in cloud computing adoption using a Petri net framework. In Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), Ottawa, ON, Canada, 11–15 May 2015; pp. 1428–1433. [Google Scholar]
- Shahidinejad, A.; Ghobaei-Arani, M.; Esmaeili, L. An elastic controller using Colored Petri Nets in cloud computing environment. Clust. Comput. 2020, 23, 1045–1071. [Google Scholar] [CrossRef]
- Fe, I.; Matos, R.; Dantas, J.; Melo, C.; Maciel, P. Stochastic Model of Performance and Cost for Auto-Scaling Planning in Public Cloud; IEEE: New York, NY, USA, 2017; pp. 2081–2086. [Google Scholar] [CrossRef]
- Aslanpour, M.S.; Ghobaei-Arani, M.; Toosi, A.N. Auto-scaling web applications in clouds: A cost-aware approach. J. Netw. Comput. Appl. 2017, 95, 26–41. [Google Scholar] [CrossRef]
- Huang, C.W.; Hu, W.H.; Shih, C.C.; Lin, B.T.; Cheng, C.W. The improvement of auto-scaling mechanism for distributed database—A case study for MongoDB. In Proceedings of the 2013 15th Asia-Pacific Network Operations and Management Symposium (APNOMS), Hiroshima, Japan, 25–27 September 2013; pp. 1–3. [Google Scholar]
- Huang, G.; Wang, S.; Zhang, M.; Li, Y.; Qian, Z.; Chen, Y.; Zhang, S. Auto scaling virtual machines for web applications with queueing theory. In Proceedings of the 2016 3rd International Conference on Systems and Informatics (ICSAI), Shanghai, China, 19–21 November 2016; pp. 433–438. [Google Scholar]
- Evangelidis, A.; Parker, D.; Bahsoon, R. Performance modelling and verification of cloud-based auto-scaling policies. Future Gener. Comput. Syst. 2018, 87, 629–638. [Google Scholar] [CrossRef]
- Schuler, L.; Jamil, S.; Kühl, N. AI-based resource allocation: Reinforcement learning for adaptive auto-scaling in serverless environments. In Proceedings of the 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid), Melbourne, Australia, 10–13 May 2021; pp. 804–811. [Google Scholar]
- Bauer, A.; Grohmann, J.; Herbst, N.; Kounev, S. On the value of service demand estimation for auto-scaling. In International Conference on Measurement, Modelling and Evaluation of Computing Systems; Springer: Berlin/Heidelberg, Germany, 2018; pp. 142–156. [Google Scholar]
- Feo, T.A.; Resende, M.G. A probabilistic heuristic for a computationally difficult set covering problem. Oper. Res. Lett. 1989, 8, 67–71. [Google Scholar] [CrossRef]
- Gendreau, M.; Potvin, J.Y. Handbook of Metaheuristics; Springer: Berlin/Heidelberg, Germany, 2010; Volume 2. [Google Scholar]
- Burke, E.K. ; Kendall, G. Search Methodologies; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Salehipour, A.; Sörensen, K.; Goos, P.; Bräysy, O. Efficient GRASP+ VND and GRASP+ VNS metaheuristics for the traveling repairman problem. 4OR 2011, 9, 189–209. [Google Scholar] [CrossRef]
- Hernández-Pérez, H.; Rodríguez-Martín, I.; Salazar-González, J.J. A hybrid GRASP/VND heuristic for the one-commodity pickup-and-delivery traveling salesman problem. Comput. Oper. Res. 2009, 36, 1639–1645. [Google Scholar] [CrossRef]
- Colmenar, J.M.; Greistorfer, P.; Martí, R.; Duarte, A. Advanced Greedy Randomized Adaptive Search Procedure for the Obnoxious p-Median problem. Eur. J. Oper. Res. 2016, 252, 432–442. [Google Scholar] [CrossRef]
- Silva, B.; Matos, R.; Callou, G.; Figueiredo, J.; Oliveira, D.; Ferreira, J.; Dantas, J.; Junior, A.; Alves, V.; Maciel, P. Mercury: An Integrated Environment for Performance and Dependability Evaluation of General Systems. In Proceedings of the Industrial Track at 45th Dependable Systems and Networks Conference (DSN), Rio de Janeiro, Brazil, 22–25 June 2015. [Google Scholar]
- Cheng, X.; Liu, J.; Dale, C. Understanding the characteristics of internet short video sharing: A YouTube-based measurement study. IEEE Trans. Multimed. 2013, 15, 1184–1194. [Google Scholar] [CrossRef]
Related Work | Measured Metrics | Architecture Planning | Formal Optimization | VM Types | Contract Types |
---|---|---|---|---|---|
[42] | Response time, CPU utilization | No | No | No | No |
[45] | Response time, concurrent users | No | No | No | Yes |
[39] | Response time, cost | No | Yes | No | Yes |
[49] | Response time | No | Yes | No | No |
[48] | Throughput | No | No | No | No |
[47] | Response time, cost | Yes | No | No | No |
[44] | Response time, cost | Yes | No | No | Yes |
[46] | Response time, cost | Yes | No | Yes | No |
This Work | Response time, throughput and cost | Yes | Yes | Yes | Yes |
Label | Description |
---|---|
Condition for instantiating on-demand VMs. | |
Condition to destroy on-demand VMs. | |
Instantiation threshold of on-demand VMs. | |
Destruction threshold of on-demand VM. | |
Number of VMs required for each scaling up. | |
Maximum number of simultaneous jobs per VM. | |
Number of reserved VMs. | |
Service Time. | |
Time to instantiate a new VM. |
Transition | Type | Server Semantic | Weight | Priority |
---|---|---|---|---|
ARRIVAL | Timed | Single Server | - | - |
SERVICE_TIME | Timed | Infinite Server | - | - |
INSTATIATION_TIME | Timed | Infinite Server | - | - |
T1 | Immediate | - | 1 | 1 |
T2 | Immediate | - | 1 | 1 |
T3 | Immediate | - | 1 | 2 |
T4 | Immediate | - | 1 | 1 |
T5 | Immediate | - | 1 | 1 |
Label | Description |
---|---|
Time between request arrival. | |
Wait for system queue availability. | |
Jbs waiting to be processed. | |
Maximum queue capacity of the system | |
Capacity available in the queue. | |
Allocate processing capacity available. | |
Jobs being processed. | |
Available capacity of on-demand VMs. | |
Number of VMs being instantiated. | |
Maximum Number of on-demand VMs. |
Scenario | Mean (s) | Distribution | Phases | Rate |
---|---|---|---|---|
Scenario 1 | 22.34 | Erlang | 350 | 0.0638 |
Scenario 2 | 15.58 | Erlang | 9 | 1.6843 |
Scenario | Mean (s) | Distribution | Phases | Rate |
---|---|---|---|---|
Scenarios 1 and 2 | 21.14 | Erlang | 522 | 0.040 |
Case | Measure | Value |
---|---|---|
1 | Min. Throughput | 0.099 transcoding/s |
Max. Response time | 15 s | |
2 | Min. Throughput | 0.099 transcoding/s |
Max. Response time | 30 s | |
3 | Min. Throughput | 0.099 transcoding/s |
Max. Response time | 45 s |
VM Type | Time (s) |
---|---|
I | 21.76 |
II | 21.14 |
III | 20.48 |
IV | 20.36 |
SLA | Parameter | Value |
---|---|---|
15 s | Vm type | t2.medium |
reserved instances | 2 | |
THR_SCALING_UP | 10.0 | |
THR_SCALING_DOWN | 9.0 | |
N_WORKERS | 1 | |
N_VMS | 1 | |
30 s | Vm type | t2.micro |
reserved instances | 2 | |
THR_SCALING_UP | 10 | |
THR_SCALING_DOWN | 8 | |
N_WORKERS | 1 | |
N_VMS | 1 | |
45 s | Vm type | t2.micro |
reserved instances | 1 | |
THR_SCALING_UP | 5 | |
THR_SCALING_DOWN | 1 | |
N_WORKERS | 1 | |
N_VMS | 1 |
SLA | Metric | Value |
---|---|---|
15 s | Elastic VMs usage | 3.71 × 10 |
Throughput | 0.1 jobs/s | |
Mean Response Time | 13.01 s | |
Cost | $630.71 | |
30 s | Elastic VMs usage | 6.651 × 10 |
Throughput | 0.099 jobs/s | |
Mean Response Time | 29.99 s | |
Cost | $157.75 | |
45 s | Elastic VMs usage | 0.61 |
Throughput | 0.099 jobs/s | |
Mean Response Time | 43.52 s | |
Cost | $148.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fé, I.; Matos, R.; Dantas, J.; Melo, C.; Nguyen, T.A.; Min, D.; Choi, E.; Silva, F.A.; Maciel, P.R.M. Performance-Cost Trade-Off in Auto-Scaling Mechanisms for Cloud Computing. Sensors 2022, 22, 1221. https://doi.org/10.3390/s22031221
Fé I, Matos R, Dantas J, Melo C, Nguyen TA, Min D, Choi E, Silva FA, Maciel PRM. Performance-Cost Trade-Off in Auto-Scaling Mechanisms for Cloud Computing. Sensors. 2022; 22(3):1221. https://doi.org/10.3390/s22031221
Chicago/Turabian StyleFé, Iure, Rubens Matos, Jamilson Dantas, Carlos Melo, Tuan Anh Nguyen, Dugki Min, Eunmi Choi, Francisco Airton Silva, and Paulo Romero Martins Maciel. 2022. "Performance-Cost Trade-Off in Auto-Scaling Mechanisms for Cloud Computing" Sensors 22, no. 3: 1221. https://doi.org/10.3390/s22031221
APA StyleFé, I., Matos, R., Dantas, J., Melo, C., Nguyen, T. A., Min, D., Choi, E., Silva, F. A., & Maciel, P. R. M. (2022). Performance-Cost Trade-Off in Auto-Scaling Mechanisms for Cloud Computing. Sensors, 22(3), 1221. https://doi.org/10.3390/s22031221