Study of the Off-Axis Fresnel Zone Plate of a Microscopic Tomographic Aberration
<p>Imaging schematic of aberration axis Fresnel zone plate.</p> "> Figure 2
<p>The number of grating lines of the aberrated off-axis Fresnel zone plate.</p> "> Figure 3
<p>Simulation light path diagram of 3D microscopic imaging system.</p> "> Figure 4
<p>Light sectors calculated by ZEMAX in three orders for the 3D chromatography microscope system before and after aberration correction. (<b>a</b>–<b>c</b>) Light sectors corresponding to different diffraction levels of unmodified chromatography microscope system. (<b>d</b>–<b>f</b>) Light sectors corresponding to different diffraction levels of the aberrated chromatography microscope system.</p> "> Figure 5
<p>Point column diagram in three orders for the 3D chromatography microscope system before and after aberration correction. (<b>a</b>–<b>c</b>) Point column diagram corresponding to different diffraction levels of unmodified chromatography microscopy system. (<b>d</b>–<b>f</b>) Point column diagram corresponding to different diffraction levels of aberrated chromatography microscopy system (compare RMS at the bottom of the diagram).</p> "> Figure 6
<p>The comparison diagram of the Seidel coefficient of the tomographic microscopic system Blue corresponds to the Seidel coefficient for the unmodified chromatography system. The yellow color corresponds to the Seidel coefficient of the aberrated chromatography system. The adjacent blue and yellow rectangles correspond to one diffraction order of the chromatographic system.</p> "> Figure 7
<p>Diffraction efficiency variation curve with etching depth for 0 and ±1 diffraction levels of aberrated Fresnel zone plate (red represents level 0, black represents level ±1).</p> "> Figure 8
<p>(<b>a</b>) Diffraction efficiency difference between level 0 and +1 diffraction versus period (μm) and etching depth (μm) contours (<b>b</b>) Diffraction efficiency difference between level 0 and +1 with respect to the contour of the bottom angle (°) and etching depth (μm).</p> "> Figure 9
<p>Test results of aberrated off-axis Fresnel zone plate. (<b>a</b>) the microstructure (<b>b</b>) the atomic force software tests.</p> "> Figure 10
<p>Inversion results of aberrated off-axis Fresnel wave with slice slot type test.</p> "> Figure 11
<p>(<b>a</b>) Single-wavelength diffraction efficiency test optical path. (<b>b</b>) Distribution of sampling points for aberrated off-axis Fresnel waveband diffraction efficiency test.</p> "> Figure 12
<p>Comparison of theoretical and measured values of diffraction efficiency for different diffraction stages.</p> "> Figure 13
<p>Imaging results: (<b>a</b>) Off-axis Fresnel zone plate; (<b>b</b>) aberrated off-axis Fresnel zone plate.</p> "> Figure 14
<p>Experimental optical path diagram of chromatography microscope system.</p> "> Figure 15
<p>Results of experiment using chromatography microscopy with 5× objective lens with: (<b>a</b>,<b>b</b>) Off-axis Fresnel zone plate; (<b>c</b>,<b>d</b>) aberrated off-axis Fresnel zone plate.</p> "> Figure 16
<p>Results of experiment using chromatography microscopy with 10× objective lens with: (<b>a</b>,<b>b</b>) Off-axis Fresnel zone plate; (<b>c</b>,<b>d</b>) aberrated off-axis Fresnel zone plate.</p> ">
Abstract
:1. Introduction
2. Design of Fresnel Zone Plate for Aberration Correction
2.1. Grid Distribution Design and Simulation Verification
- The evaluation function is established. The evaluation function of the laminar microscopy system is the root mean square error of the wavefront. Additionally, in order to avoid the optimization process, the central period is too large, leading to the imaging distance exceeding the CCD size. The central period of 56 μm of the aberrated off-axis Fresnel zone plate is considered to be a nonlinear constraint.
- The range of values of the angle recording parameter γ is calculated based on the central inscribed density and grating equation of the aberrated off-axis Fresnel zone plate. The optical path displacement range (rCmin, rCmax, rDmin, rDmax) is limited according to the optical stage dimensions being set as the boundary constraints.
- After inputting the calculated record parameters and starting the operation, the optimal solution of the record parameters is solved by finding the minimum value of the evaluation function at the next point step-by-step around the initial value.
2.2. The Groove Structure Design of the Aberrated Off-Axis Fresnel Zone Plate
3. Fabrication, Performance Test, and Simulation of Aberrated Off-Axis Fresnel Zone Plate
4. Result and Discussion
4.1. Performance Parameter Tests of Aberrated Off-Axis Fresnel Zone Plate
4.2. Imaging Experimental Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, P.H.; Singh, V.R.; Wong, J.-M.; Sung, K.-B.; Luo, Y. Non-axial-scanning multifocal confocal microscopy with multiplexed volume holographic gratings. Opt. Lett. 2017, 42, 346–349. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, P.M.; Greenaway, A.H. Simultaneous Multiplane Imaging with a Distorted Diffraction Grating. Appl. Opt. 1999, 38, 6692–6699. [Google Scholar] [CrossRef] [PubMed]
- Angarita-Jaimes, N.; McGhee, E.; Chennaoui, M.; Campbell, H.I.; Zhang, S.; Towers, C.E.; Greenaway, A.H.; Towers, D.P. Wavefront sensing for single view three-component three-dimensional flow velocimetry. Exp. Fluids 2006, 41, 881–891. [Google Scholar] [CrossRef]
- Dalgarno, P.A.; Dalgarno, H.I.C.; Putoud, A.; Lambert, R.; Paterson, L.; Logan, D.C.; Towers, D.P.; Warburton, R.J.; Greenaway, A.H. Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy. Opt. Express 2010, 18, 877–884. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Scholz, L.; Lee, D.; Dalgarno, H.; Foo, D.; Yang, L.; Lu, W.; Greenaway, A. Multi-mode microscopy using diffractive optical elements. Eng. Rev. 2011, 31, 133–139. [Google Scholar]
- Feng, Y.; Dalgarno, P.A.; Lee, D.; Yang, Y.; Thomson, R.R.; Greenaway, A.H. Chromatically-corrected, high-efficiency, multi-colour, multi-plane 3D imaging. Opt. Express 2012, 20, 20705–20714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrahamsson, S.; Ilic, R.; Wisniewski, J.; Mehl, B.; Yu, L.; Chen, L.; Davanco, M.; Oudjedi, L.; Fiche, J.-B.; Hajj, B.; et al. Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging. Biomed. Opt. Express 2016, 7, 855–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, K.; Wang, Z.; Huang, X.; Wang, X.; Yoo, S.; Ruiz, P.; Gdor, I.; Selewa, A.; Ferrier, N.J.; Schrerer, N.; et al. Computational multifocal microscopy. Biomed. Opt. Express 2018, 9, 6477–6496. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Feng, S.; Nie, S.; Chang, C.; Ma, J.; Yuan, C. Multi-plane unequal interval imaging based on polarization multiplexing. Opt. Commun. 2019, 431, 126–130. [Google Scholar] [CrossRef]
- Wolbromsky, L.; Dudaie, M.; Shinar, S.; Shaked, N.T. Multiplane imaging with extended field-of-view using a quadratically distorted grating. Opt. Commun. 2020, 463, 125399. [Google Scholar] [CrossRef]
- Abrahamsson, S.; Chen, J.; Hajj, B.; Stallinga, S.; Katsov, A.Y.; Wisniewski, J.; Mizuguchi, G.; Soule, P.; Mueller, F.; Darzacq, C.D.; et al. Fast multicolor 3D imaging using aberration-corrected multifocus microscopy. Nat. Methods 2013, 10, 60–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Bailleul, J.; Simon, B.; Debailleul, M.; Colicchio, B.; Haeberlé, O. Tomographic diffractive microscopy and multiview profilometry with flexible aberration correction. Appl. Opt. 2014, 53, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Namioka, T.; Seya, M.; Noda, H. Design and Performance of Holographic Concave Gratings. Jpn. J. Appl. Phys. 1976, 15, 1181. [Google Scholar] [CrossRef]
- Itou, M.; Harada, T.; Kita, T. Soft x-ray monochromator with a varied-space plane grating for synchrotron radiation: Design and evaluation. Appl. Opt. 1989, 28, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Harada, T.; Moriyama, S.; Kita, T. Mechanically ruled stigmatic concave gratings. Jpn. J. Appl. Phys. 1975, 14, 175. [Google Scholar] [CrossRef]
- Jiao, Q.; Zhu, C.; Tan, X.; Qi, X.; Bayanheshig. The effect of ultrasonic vibration and surfactant additive on fabrication of 53.5 gr/mm silicon echelle grating with low surface roughness in alkaline KOH solution. Ultrason. Sonochemistry 2018, 40, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Palmer, E.W.; Hutley, M.C.; Franks, A.; Verrill, J.F.; Gale, B. Diffraction gratings (manufacture). Rep. Prog. Phys. 2001, 38, 975. [Google Scholar] [CrossRef]
- Zhang, B.; Rao, P.; Fuso, F.; Guiying, H.; File, W.D. Simulation of optical distribution inside of SNOM optical probes with VirtualLab Fusion. In Proceedings of the Laser Ignition Conference, Bucharest Romania, 20–23 June 2017; pp. 17–22. [Google Scholar]
Spherical Aberration, Coma Aberration | Correction System All Aberrations | |
---|---|---|
γ | −1.509 rad | −1.55 rad |
δ | 1.47 rad | 1.47 rad |
rC | 59.093 mm | 133.9396 mm |
rD | 59.996 mm | 133.3251 mm |
Center Period d0 | Radius R | Thickness b |
---|---|---|
56 μm | 15 mm | 2 mm |
No. | 0 Level | +1 Level | −1 Level | Total |
---|---|---|---|---|
1 | 27.38% | 27.30% | 27.28% | 81.96% |
2 | 27.41% | 27.35% | 27.32% | 82.08% |
3 | 27.39% | 27.33% | 27.31% | 82.03% |
4 | 27.50% | 27.25% | 27.28% | 82.03% |
5 | 27.38% | 27.31% | 27.29% | 81.98% |
6 | 27.40% | 27.38% | 27.35% | 82.13% |
7 | 27.39% | 27.34% | 27.35% | 82.08% |
8 | 27.40% | 27.33% | 27.31% | 82.04% |
9 | 27.38% | 27.31% | 27.29% | 81.98% |
Image Index | SNR [dB] | Average Gradient |
---|---|---|
Off-axis Fresnel zone plate | 7.8143 | 6.0893 |
Aberrated off-axis Fresnel zone plate | 9.3562 | 6.2719 |
Image Index | Off-Axis Fresnel Zone Plate | Aberrated Fresnel Zone Plate |
---|---|---|
SNR (5×) group 1 | 17.5556 | 20.8156 |
SNR (5×) group 2 | 21.5643 | 25.4458 |
SNR (10×) group 3 | 21.8550 | 25.8981 |
SNR (10×) group 4 | 21.7625 | 25.7106 |
Average gradient (5×) group 1 | 2.7128 | 2.7889 |
Average gradient (5×) group 2 | 2.7145 | 2.7905 |
Average gradient (10×) group 3 | 3.5359 | 3.6419 |
Average gradient (10×) group 4 | 2.7323 | 2.8096 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Ma, Z.; Liu, S.; Jiao, Q.; Zhang, J.; Zhang, W.; Pei, J.; Li, H.; Li, Y.; Zou, Y.; et al. Study of the Off-Axis Fresnel Zone Plate of a Microscopic Tomographic Aberration. Sensors 2022, 22, 1113. https://doi.org/10.3390/s22031113
Yang L, Ma Z, Liu S, Jiao Q, Zhang J, Zhang W, Pei J, Li H, Li Y, Zou Y, et al. Study of the Off-Axis Fresnel Zone Plate of a Microscopic Tomographic Aberration. Sensors. 2022; 22(3):1113. https://doi.org/10.3390/s22031113
Chicago/Turabian StyleYang, Lin, Zhenyu Ma, Siqi Liu, Qingbin Jiao, Jiahang Zhang, Wei Zhang, Jian Pei, Hui Li, Yuhang Li, Yubo Zou, and et al. 2022. "Study of the Off-Axis Fresnel Zone Plate of a Microscopic Tomographic Aberration" Sensors 22, no. 3: 1113. https://doi.org/10.3390/s22031113
APA StyleYang, L., Ma, Z., Liu, S., Jiao, Q., Zhang, J., Zhang, W., Pei, J., Li, H., Li, Y., Zou, Y., Xu, Y., & Tan, X. (2022). Study of the Off-Axis Fresnel Zone Plate of a Microscopic Tomographic Aberration. Sensors, 22(3), 1113. https://doi.org/10.3390/s22031113