Nonlinear Analytics for Electrochemical Biosensor Design Using Enzyme Aggregates and Delayed Mass Action
<p>Flowchart of enzymatic reactions with the respect to EIS-complex R<sub><span class="html-italic">i,j</span></sub>.</p> "> Figure 2
<p>Estimated density of distributed delay <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </semantics></math> for model (<a href="#FD11-sensors-22-00980" class="html-disp-formula">11</a>).</p> "> Figure 3
<p>Plots of expected vs predicted trajectories with the help of (<a href="#FD11-sensors-22-00980" class="html-disp-formula">11</a>). Additionally, a comparison of modeling with the help of Brown’s model (<a href="#FD4-sensors-22-00980" class="html-disp-formula">4</a>) with discrete delay is shown: <span style="color: #1F77b4">—</span> <math display="inline"><semantics> <msub> <mi>κ</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>e</mi> <mi>d</mi> <mo>,</mo> <mi>d</mi> <mi>i</mi> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>i</mi> <mi>b</mi> <mi>u</mi> <mi>t</mi> <mi>e</mi> <mi>d</mi> </mrow> </msub> </semantics></math>, <span style="color: #FF7f0e">—</span> <math display="inline"><semantics> <msub> <mi>κ</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>e</mi> <mi>d</mi> <mo>,</mo> <mi>d</mi> <mi>i</mi> <mi>s</mi> <mi>c</mi> <mi>r</mi> <mi>e</mi> <mi>t</mi> <mi>e</mi> </mrow> </msub> </semantics></math> <span style="color: #2ca02c">·</span> <math display="inline"><semantics> <msub> <mi>κ</mi> <mrow> <mi>e</mi> <mi>x</mi> <mi>p</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 3 Cont.
<p>Plots of expected vs predicted trajectories with the help of (<a href="#FD11-sensors-22-00980" class="html-disp-formula">11</a>). Additionally, a comparison of modeling with the help of Brown’s model (<a href="#FD4-sensors-22-00980" class="html-disp-formula">4</a>) with discrete delay is shown: <span style="color: #1F77b4">—</span> <math display="inline"><semantics> <msub> <mi>κ</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>e</mi> <mi>d</mi> <mo>,</mo> <mi>d</mi> <mi>i</mi> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>i</mi> <mi>b</mi> <mi>u</mi> <mi>t</mi> <mi>e</mi> <mi>d</mi> </mrow> </msub> </semantics></math>, <span style="color: #FF7f0e">—</span> <math display="inline"><semantics> <msub> <mi>κ</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>e</mi> <mi>d</mi> <mo>,</mo> <mi>d</mi> <mi>i</mi> <mi>s</mi> <mi>c</mi> <mi>r</mi> <mi>e</mi> <mi>t</mi> <mi>e</mi> </mrow> </msub> </semantics></math> <span style="color: #2ca02c">·</span> <math display="inline"><semantics> <msub> <mi>κ</mi> <mrow> <mi>e</mi> <mi>x</mi> <mi>p</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 4
<p>Numerical simulation with the help of (24) for different initial values of inhibitors.</p> "> Figure 5
<p>Error analysis of predicted trajectories with the help of (<a href="#FD11-sensors-22-00980" class="html-disp-formula">11</a>) and (<a href="#FD4-sensors-22-00980" class="html-disp-formula">4</a>): <span style="color: #1F77b4">—</span> denotes the errors of <math display="inline"><semantics> <msub> <mi>κ</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>e</mi> <mi>d</mi> <mo>,</mo> <mi>d</mi> <mi>i</mi> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>i</mi> <mi>b</mi> <mi>u</mi> <mi>t</mi> <mi>e</mi> <mi>d</mi> </mrow> </msub> </semantics></math>, <span style="color: #FF7f0e">—</span> denotes the errors of <math display="inline"><semantics> <msub> <mi>κ</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>e</mi> <mi>d</mi> <mo>,</mo> <mi>d</mi> <mi>i</mi> <mi>s</mi> <mi>c</mi> <mi>r</mi> <mi>e</mi> <mi>t</mi> <mi>e</mi> </mrow> </msub> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Generalization to the Multidimensional Case of Competitive Inhibition
3. Results
3.1. Enzyme Kinetics for the Case of One Substrate
3.2. Parameter Estimation
Algorithm 1: COBYLA algorithm implementation to the problem (17). |
|
3.3. Enzyme Kinetics for Enzyme–Substrate–Inhibitor Interaction
4. Experimental Study
4.1. Enzyme–Substrate Interaction
- Sample 1. BSA + enzyme + 0.1 mL of substrate;
- Sample 2. BSA + enzyme + 0.3 mL of substrate;
- Sample 3. BSA + enzyme + 0.9 mL of substrate;
- Sample 4. BSA + enzyme + 1.5 mL of substrate.
4.1.1. Experimental Data
4.1.2. Parameter Estimation for the Experimental Study
4.2. Enzyme–Substrate–Inhibitor Interaction
4.3. Numerical Simulation of Enzyme–Substrate–Inhibitor Model
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IR1CMM | Irreversible one-complex Michaelis-Menthen |
IR1CB | Irreversible one-complex Brown’s |
MSMIER | Multi-substrate mutli-inhibitor enzymatic reaction |
ESI | Enzyme-substrate-inhibitor |
References
- Roussel, M.R. The Use of Delay Differential Equations in Chemical Kinetics. J. Phys. Chem. 1996, 100, 8323–8330. [Google Scholar] [CrossRef]
- Cornish-Bowden, A. The origins of enzyme kinetics. FEBS Lett. 2013, 587, 2725–2730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, I.R. Differential delay equations in chemical kinetics: Some simple linear model systems. J. Chem. Phys. 1990, 92, 1702–1712. [Google Scholar] [CrossRef]
- Cao, J. Michaelis-Menten Equation and Detailed Balance in Enzymatic Networks. J. Phys. Chem. B 2011, 115, 5493–5498. [Google Scholar] [CrossRef] [PubMed]
- English, B.P.; Min, W.; van Oijen, A.M.; Lee, K.T.; Luo, G.; Sun, H.; Cherayil, B.J.; Kou, S.C.; Xie, X.S. Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. Nat. Chem. Biol. 2005, 2, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Palsson, B. On the Dynamics of the Irreversible Michaelis-Menten Reaction Mechanism. Chem. Eng. Sci. 1987, 42, 447–458. [Google Scholar] [CrossRef] [Green Version]
- Keener, J.; Sneyd, J. (Eds.) Mathematical Physiology; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Schnell, S. Validity of the Michaelis-Menten equation - steady-state or reactant stationary assumption: That is the question. FEBS J. 2013, 281, 464–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ristenpart, W.D.; Wan, J.; Stone, H.A. Enzymatic Reactions in Microfluidic Devices: Michaelis-Menten Kinetics. Anal. Chem. 2008, 80, 3270–3276. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.J. XXXVI.—Enzyme action. J. Chem. Soc. Trans. 1902, 81, 373–388. [Google Scholar] [CrossRef] [Green Version]
- Goldbeter, A. Oscillatory enzyme reactions and Michaelis-Menten kinetics. FEBS Lett. 2013, 587, 2778–2784. [Google Scholar] [CrossRef] [PubMed]
- Albornoz, J.M.; Parravano, A. Modeling a Simple Enzyme Reaction with Delay and Discretization. arXiv 2007, arXiv:0712.0391. [Google Scholar]
- Piephoff, D.E.; Wu, J.; Cao, J. Conformational Nonequilibrium Enzyme Kinetics: Generalized Michaelis–Menten Equation. J. Phys. Chem. Lett. 2017, 8, 3619–3623. [Google Scholar] [CrossRef] [PubMed]
- Hinch, R.; Schnell, S. Mechanism Equivalence in Enzyme–Substrate Reactions: Distributed Differential Delay in Enzyme Kinetics. J. Math. Chem. 2004, 35, 253–264. [Google Scholar] [CrossRef]
- Kou, S.C.; Cherayil, B.J.; Min, W.; English, B.P.; Xie, X.S. Single-Molecule Michaelis-Menten Equations. J. Phys. Chem. B 2005, 109, 19068–19081. [Google Scholar] [CrossRef] [PubMed]
- Chow, S.N.; Mallet-Paret, J.; Van Vleck, E.S. Dynamics of lattice differential equations. Int. J. Bifurc. Chaos 1996, 6, 1605–1621. [Google Scholar] [CrossRef]
- Martsenyuk, V.; Kłos-Witkowska, A.; Sverstiuk, A. Stability, bifurcation and transition to chaos in a model of immunosensor based on lattice differential equations with delay. Electron. J. Qual. Theory Differ. Equ. 2018, 2018, 1–31. [Google Scholar] [CrossRef]
- Martsenyuk, V.; Veselska, O. On Nonlinear Reaction-Diffusion Model with Time Delay on Hexagonal Lattice. Symmetry 2019, 11, 758. [Google Scholar] [CrossRef] [Green Version]
- Martsenyuk, V.; Klos-Witkowska, A.; Sverstiuk, A. Stability Investigation of Biosensor Model Based on Finite Lattice Difference Equations; Springer International Publishing: Berlin, Germany, 2020; pp. 297–321. [Google Scholar] [CrossRef]
- Beuter, A.; Glass, L.; Mackey, M.C.; Titcombe, M.S. (Eds.) Nonlinear Dynamics in Physiology and Medicine; Springer: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- Raghuwanshi, V.S.; Yu, B.; Browne, C.; Garnier, G. Reversible pH Responsive Bovine Serum Albumin Hydrogel Sponge Nanolayer. Front. Bioeng. Biotechnol. 2020, 8, 573. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Sharma, A.; Gupta, M.N. Preparation of cross-linked enzyme aggregates by using bovine serum albumin as a proteic feeder. Anal. Biochem. 2006, 351, 207–213. [Google Scholar] [CrossRef] [PubMed]
0.04 | 1 | 0.04042714 | ||
a | 1 | 1000 | 1.255818 | |
m | 20 | 1000 | 6.703709 | |
5 | 1000 | 4.673685 | ||
6000 | 729.2215 | |||
K | 50 | 246.2885 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martsenyuk, V.; Klos-Witkowska, A.; Dzyadevych, S.; Sverstiuk, A. Nonlinear Analytics for Electrochemical Biosensor Design Using Enzyme Aggregates and Delayed Mass Action. Sensors 2022, 22, 980. https://doi.org/10.3390/s22030980
Martsenyuk V, Klos-Witkowska A, Dzyadevych S, Sverstiuk A. Nonlinear Analytics for Electrochemical Biosensor Design Using Enzyme Aggregates and Delayed Mass Action. Sensors. 2022; 22(3):980. https://doi.org/10.3390/s22030980
Chicago/Turabian StyleMartsenyuk, Vasyl, Aleksandra Klos-Witkowska, Sergei Dzyadevych, and Andriy Sverstiuk. 2022. "Nonlinear Analytics for Electrochemical Biosensor Design Using Enzyme Aggregates and Delayed Mass Action" Sensors 22, no. 3: 980. https://doi.org/10.3390/s22030980
APA StyleMartsenyuk, V., Klos-Witkowska, A., Dzyadevych, S., & Sverstiuk, A. (2022). Nonlinear Analytics for Electrochemical Biosensor Design Using Enzyme Aggregates and Delayed Mass Action. Sensors, 22(3), 980. https://doi.org/10.3390/s22030980