Towards a Contactless Stress Classification Using Thermal Imaging
<p>Protocol timeline. The dashed line indicates that the subject may take as much time as he/she needs to complete the task. PS indicates the moment when the subject is asked to report its perceived stress level.</p> "> Figure 2
<p>Facial ROIs’ names and corresponding locations.</p> "> Figure 3
<p>Thermal signals of one sample subject for each ROI in both rest and stress conditions. The temperature range of the plots was set equal for both conditions in each ROI, to allow visual comparison.</p> "> Figure 4
<p>Application of the cvxEDA algorithm decomposition to the EDA signal of one sample subject in both rest and stress conditions.</p> "> Figure 5
<p>Statistical comparison for each of the EDA features extracted. Significant differences between <span class="html-italic">Rest</span> and <span class="html-italic">Stroop</span> sessions after the Wilcoxon signed rank test with FDR-BH correction are highlighted with an asterisk (* = <span class="html-italic">p</span> < 0.05; ** = <span class="html-italic">p</span> < 0.01; *** = <span class="html-italic">p</span> < 0.001).</p> "> Figure 6
<p>Statistical comparison for each of the HRV features extracted. Significant differences between <span class="html-italic">Rest</span> and <span class="html-italic">Stroop</span> sessions after the Wilcoxon signed rank test with FDR-BH correction are highlighted with an asterisk (* = <span class="html-italic">p</span> < 0.05; ** = <span class="html-italic">p</span> < 0.01; *** = <span class="html-italic">p</span> < 0.001).</p> "> Figure 7
<p>Statistical comparison for the respiratory feature extracted. Significant differences between <span class="html-italic">Rest</span> and <span class="html-italic">Stroop</span> sessions after the Wilcoxon signed rank test with FDR-BH correction are highlighted with an asterisk (* = <span class="html-italic">p</span> < 0.05; ** = <span class="html-italic">p</span> < 0.01; *** = <span class="html-italic">p</span> < 0.001).</p> "> Figure 8
<p>Statistical comparison for each of the thermal features extracted. Significant differences between <span class="html-italic">Rest</span> and <span class="html-italic">Stroop</span> sessions after the Wilcoxon signed rank test with FDR-BH correction are highlighted with an asterisk (* = <span class="html-italic">p</span> < 0.05; ** = <span class="html-italic">p</span> < 0.01; *** = <span class="html-italic">p</span> < 0.001).</p> "> Figure 9
<p>Accuracy trend of stress/non-stress recognition problem as a function of the selected features. The features are ranked according to the SVM-RFE criterion. Maximum accuracy is highlighted by red asterisks.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Experimental Protocol
2.3. Data Acquisition
2.3.1. Thermal Imaging
2.3.2. Physiological Signals
2.4. Data Processing
2.4.1. Thermal Processing
2.4.2. EDA Processing
2.4.3. HRV Processing
2.4.4. RESP Processing
2.5. Exploratory Statistical Analysis
2.6. Classification—Stress and Rest Recognition
3. Results
3.1. Exploratory Statistical Analyses
3.2. Classification
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ioannou, S.; Gallese, V.; Merla, A. Thermal infrared imaging in psychophysiology: Potentialities and limits. Psychophysiology 2014, 51, 951–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, J.E.; Hall, M.E. Guyton and Hall Textbook of Medical Physiology E-Book; Elsevier Health Sciences: New York, NY, USA, 2020. [Google Scholar]
- Wallin, B.G. Sympathetic nerve activity underlying electrodermal and cardiovascular reactions in man. Psychophysiology 1981, 18, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Critchley, H.D. Electrodermal responses: What happens in the brain. Neuroscientist 2002, 8, 132–142. [Google Scholar] [CrossRef] [PubMed]
- McCorry, L.K. Physiology of the autonomic nervous system. Am. J. Pharm. Educ. 2007, 71, 78. [Google Scholar] [CrossRef] [Green Version]
- Greene, S.; Thapliyal, H.; Caban-Holt, A. A Survey of Affective Computing for Stress Detection: Evaluating technologies in stress detection for better health. IEEE Consum. Electron. Mag. 2016, 5, 44–56. [Google Scholar] [CrossRef]
- Stress revisited: A critical evaluation of the stress concept. Neurosci. Biobehav. Rev. 2011, 35, 1291–1301. [CrossRef]
- Krantz, D.S.; Whittaker, K.S.; Sheps, D.S. Psychosocial risk factors for coronary heart disease: Pathophysiologic mechanisms. In Heart and Mind: The Practice of Cardiac Psychology; American Psychological Association: Washington, DC, USA, 2011. [Google Scholar]
- Mohino-Herranz, I.; Gil-Pita, R.; Ferreira, J.; Rosa-Zurera, M.; Seoane, F. Assessment of mental, emotional and physical stress through analysis of physiological signals using smartphones. Sensors 2015, 15, 25607–25627. [Google Scholar] [CrossRef]
- Greco, A.; Valenza, G.; Lázaro, J.; Garzón-Rey, J.M.; Aguiló, J.; De-la Camara, C.; Bailón, R.; Scilingo, E.P. Acute stress state classification based on electrodermal activity modeling. IEEE Trans. Affect. Comput. 2021. [Google Scholar] [CrossRef]
- Peternel, K.; Pogačnik, M.; Tavčar, R.; Kos, A. A presence-based context-aware chronic stress recognition system. Sensors 2012, 12, 15888–15906. [Google Scholar] [CrossRef]
- Zangróniz, R.; Martínez-Rodrigo, A.; Pastor, J.M.; López, M.T.; Fernández-Caballero, A. Electrodermal activity sensor for classification of calm/distress condition. Sensors 2017, 17, 2324. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Du, S. Psychological stress level detection based on electrodermal activity. Behav. Brain Res. 2018, 341, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Arza, A.; Garzón-Rey, J.M.; Lázaro, J.; Gil, E.; Lopez-Anton, R.; de la Camara, C.; Laguna, P.; Bailon, R.; Aguiló, J. Measuring acute stress response through physiological signals: Towards a quantitative assessment of stress. Med. Biol. Eng. Comput. 2019, 57, 271–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerutti, S.; Hoyer, D.; Voss, A. Multiscale, multiorgan and multivariate complexity analyses of cardiovascular regulation. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 1337–1358. [Google Scholar] [CrossRef] [PubMed]
- Murthy, J.N.; Van Jaarsveld, J.; Fei, J.; Pavlidis, I.; Harrykissoon, R.I.; Lucke, J.F.; Faiz, S.; Castriotta, R.J. Thermal infrared imaging: A novel method to monitor airflow during polysomnography. Sleep 2009, 32, 1521–1527. [Google Scholar] [CrossRef] [Green Version]
- Garbey, M.; Sun, N.; Merla, A.; Pavlidis, I. Contact-free measurement of cardiac pulse based on the analysis of thermal imagery. IEEE Trans. Biomed. Eng. 2007, 54, 1418–1426. [Google Scholar] [CrossRef]
- Merla, A.; Di Donato, L.; Romani, G.; Proietti, M.; Salsano, F. Comparison of thermal infrared and laser doppler imaging in the assessment of cutaneous tissue perfusion in scleroderma patients and healthy controls. Int. J. Immunopathol. Pharmacol. 2008, 21, 679–686. [Google Scholar] [CrossRef]
- Di Giacinto, A.; Brunetti, M.; Sepede, G.; Ferretti, A.; Merla, A. Thermal signature of fear conditioning in mild post traumatic stress disorder. Neuroscience 2014, 266, 216–223. [Google Scholar] [CrossRef]
- Engert, V.; Merla, A.; Grant, J.A.; Cardone, D.; Tusche, A.; Singer, T. Exploring the use of thermal infrared imaging in human stress research. PLoS ONE 2014, 9, e90782. [Google Scholar] [CrossRef] [Green Version]
- Genno, H.; Ishikawa, K.; Kanbara, O.; Kikumoto, M.; Fujiwara, Y.; Suzuki, R.; Osumi, M. Using facial skin temperature to objectively evaluate sensations. Int. J. Ind. Ergon. 1997, 19, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Or, C.K.; Duffy, V.G. Development of a facial skin temperature-based methodology for non-intrusive mental workload measurement. Occup. Ergon. 2007, 7, 83–94. [Google Scholar] [CrossRef]
- Salazar-López, E.; Domínguez, E.; Ramos, V.J.; De la Fuente, J.; Meins, A.; Iborra, O.; Gálvez, G.; Rodríguez-Artacho, M.; Gómez-Milán, E. The mental and subjective skin: Emotion, empathy, feelings and thermography. Conscious. Cogn. 2015, 34, 149–162. [Google Scholar] [CrossRef]
- Filippini, C.; Spadolini, E.; Cardone, D.; Merla, A. Thermal Imaging Based Affective Computing for Educational Robot. In Proceedings of the Multidisciplinary Digital Publishing Institute Proceedings, Florence, Italy, 17–19 September 2019; Volume 27, p. 27. [Google Scholar]
- Sonkusare, S.; Ahmedt-Aristizabal, D.; Aburn, M.J.; Nguyen, V.T.; Pang, T.; Frydman, S.; Denman, S.; Fookes, C.; Breakspear, M.; Guo, C.C. Detecting changes in facial temperature induced by a sudden auditory stimulus based on deep learning-assisted face tracking. Sci. Rep. 2019, 9, 4729. [Google Scholar] [CrossRef] [PubMed]
- Goulart, C.; Valadão, C.; Delisle-Rodriguez, D.; Caldeira, E.; Bastos, T. Emotion analysis in children through facial emissivity of infrared thermal imaging. PLoS ONE 2019, 14, e0212928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, Y.; Bianchi-Berthouze, N.; Oliveira, M.; Holloway, C.; Julier, S. Nose heat: Exploring stress-induced nasal thermal variability through mobile thermal imaging. In Proceedings of the 2019 8th International Conference on Affective Computing and Intelligent Interaction (ACII), Cambridge, UK, 3–6 September 2019; pp. 566–572. [Google Scholar]
- Yamakoshi, T.; Yamakoshi, K.I.; Tanaka, S.; Nogawa, M.; Shibata, M.; Sawada, Y.; Rolfe, P.; Hirose, Y. A preliminary study on driver’s stress index using a new method based on differential skin temperature measurement. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 722–725. [Google Scholar]
- Puri, C.; Olson, L.; Pavlidis, I.; Levine, J.; Starren, J. StressCam: Non-contact measurement of users’ emotional states through thermal imaging. In Proceedings of the CHI’05 Extended Abstracts on Human Factors in Computing Systems, Portland, OR, USA, 2–7 April 2005; pp. 1725–1728. [Google Scholar]
- Gioia, F.; Pascali, M.A.; Greco, A.; Colantonio, S.; Scilingo, E.P. Discriminating Stress From Cognitive Load Using Contactless Thermal Imaging Devices. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 1–5 November 2021; pp. 608–611. [Google Scholar]
- Cruz-Albarran, I.A.; Benitez-Rangel, J.P.; Osornio-Rios, R.A.; Morales-Hernandez, L.A. Human emotions detection based on a smart-thermal system of thermographic images. Infrared Phys. Technol. 2017, 81, 250–261. [Google Scholar] [CrossRef]
- Resendiz-Ochoa, E.; Cruz-Albarran, I.A.; Garduño-Ramon, M.A.; Rodriguez-Medina, D.A.; Osornio-Rios, R.A.; Morales-Hernández, L.A. Novel expert system to study human stress based on thermographic images. Expert Syst. Appl. 2021, 178, 115024. [Google Scholar] [CrossRef]
- Merla, A.; Romani, G.L. Functional infrared imaging in medicine: A quantitative diagnostic approach. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 224–227. [Google Scholar]
- Stroop, J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935, 18, 643. [Google Scholar] [CrossRef]
- Cohen, S.; Kamarck, T.; Mermelstein, R. Perceived stress scale. In Measuring Stress: A Guide for Health and Social Scientists; Oxford University Press: Oxford, UK, 1994; Volume 10, pp. 1–2. [Google Scholar]
- Fernández-Cuevas, I.; Marins, J.C.B.; Lastras, J.A.; Carmona, P.M.G.; Cano, S.P.; García-Concepción, M.Á.; Sillero-Quintana, M. Classification of factors influencing the use of infrared thermography in humans: A review. Infrared Phys. Technol. 2015, 71, 28–55. [Google Scholar] [CrossRef]
- Nirkin, Y.; Masi, I.; Tuan, A.T.; Hassner, T.; Medioni, G. On face segmentation, face swapping, and face perception. In Proceedings of the 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018; pp. 98–105. [Google Scholar]
- Suhr, J.K. Kanade-lucas-tomasi (klt) feature tracker. In Comput. Vis. (EEE6503); Yonsei University: Seoul, Korea, 2009; pp. 9–18. [Google Scholar]
- Greco, A.; Valenza, G.; Lanata, A.; Scilingo, E.P.; Citi, L. cvxEDA: A convex optimization approach to electrodermal activity processing. IEEE Trans. Biomed. Eng. 2015, 63, 797–804. [Google Scholar] [CrossRef] [Green Version]
- Posada-Quintero, H.F.; Florian, J.P.; Orjuela-Cañón, A.D.; Aljama-Corrales, T.; Charleston-Villalobos, S.; Chon, K.H. Power spectral density analysis of electrodermal activity for sympathetic function assessment. Ann. Biomed. Eng. 2016, 44, 3124–3135. [Google Scholar] [CrossRef]
- Tarvainen, M.P.; Niskanen, J.P.; Lipponen, J.A.; Ranta-Aho, P.O.; Karjalainen, P.A. Kubios HRV–heart rate variability analysis software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef]
- Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.; Camm, A.J. Heart rate variability. Clin. Cardiol. 1990, 13, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Yan, K.; Zhang, D. Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sens. Actuators B Chem. 2015, 212, 353–363. [Google Scholar] [CrossRef]
- Tang, D.; Jin, W.; Qin, N.; Li, H. Feature selection and analysis of single lateral damper fault based on SVM-RFE with correlation bias reduction. In Proceedings of the 2016 35th Chinese Control Conference (CCC), Chengdu, China, 27–29 July 2016; pp. 3840–3845. [Google Scholar]
- Saeys, Y.; Inza, I.; Larranaga, P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23, 2507–2517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Yu, L.; Liu, H. Feature selection for high-dimensional data: A fast correlation-based filter solution. In Proceedings of the 20th International Conference on Machine Learning (ICML-03), Washington, DC, USA, 21–24 August 2003; pp. 856–863. [Google Scholar]
- Zhai, J.; Barreto, A. Stress detection in computer users based on digital signal processing of noninvasive physiological variables. In Proceedings of the 2006 International Conference of the IEEE Engineering In Medicine And Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 1355–1358. [Google Scholar]
- Renaud, P.; Blondin, J.P. The stress of Stroop performance: Physiological and emotional responses to color—Word interference, task pacing, and pacing speed. Int. J. Psychophysiol. 1997, 27, 87–97. [Google Scholar] [CrossRef]
- Kim, H.G.; Cheon, E.J.; Bai, D.S.; Lee, Y.H.; Koo, B.H. Stress and heart rate variability: A meta-analysis and review of the literature. Psychiatry Investig. 2018, 15, 235. [Google Scholar] [CrossRef] [Green Version]
- Ori, Z.; Monir, G.; Weiss, J.; Sayhouni, X.; Singer, D.H. Heart rate variability: Frequency domain analysis. Cardiol. Clin. 1992, 10, 499–533. [Google Scholar] [CrossRef]
- Sloan, R.; Shapiro, P.; Bagiella, E.; Boni, S.; Paik, M.; Bigger Jr, J.; Steinman, R.; Gorman, J. Effect of mental stress throughout the day on cardiac autonomic control. Biol. Psychol. 1994, 37, 89–99. [Google Scholar] [CrossRef]
- Choi, J.; Ahmed, B.; Gutierrez-Osuna, R. Development and evaluation of an ambulatory stress monitor based on wearable sensors. IEEE Trans. Inf. Technol. Biomed. 2011, 16, 279–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlemincx, E.; Taelman, J.; De Peuter, S.; Van Diest, I.; Van Den Bergh, O. Sigh rate and respiratory variability during mental load and sustained attention. Psychophysiology 2011, 48, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahman, Y.; Velloso, E.; Dingler, T.; Schmidt, A.; Vetere, F. Cognitive heat: Exploring the usage of thermal imaging to unobtrusively estimate cognitive load. In Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, New York, NY, USA, 11 September 2017; Volume 1, pp. 1–20. [Google Scholar]
- Kirschbaum, C.; Pirke, K.M.; Hellhammer, D.H. The ‘Trier Social Stress Test’—A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 1993, 28, 76–81. [Google Scholar] [CrossRef]
- Panasiti, M.S.; Cardone, D.; Pavone, E.F.; Mancini, A.; Merla, A.; Aglioti, S.M. Thermal signatures of voluntary deception in ecological conditions. Sci. Rep. 2016, 6, 35174. [Google Scholar] [CrossRef]
- Cho, Y.; Bianchi-Berthouze, N. Physiological and affective computing through thermal imaging: A survey. arXiv 2019, arXiv:1908.10307. [Google Scholar]
- Jatupaiboon, N.; Pan-Ngum, S.; Israsena, P. Subject-dependent and subject-independent emotion classification using unimodal and multimodal physiological signals. J. Med. Imaging Health Inform. 2015, 5, 1020–1027. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, M.; Liu, Q. An embedded feature selection method for imbalanced data classification. IEEE/CAA J. Autom. Sin. 2019, 6, 703–715. [Google Scholar] [CrossRef]
- Lal, T.N.; Chapelle, O.; Weston, J.; Elisseeff, A. Embedded methods. In Feature Extraction; Springer: Berlin, Germany, 2006; pp. 137–165. [Google Scholar]
- Arlot, S.; Celisse, A. A survey of cross-validation procedures for model selection. Stat. Surv. 2010, 4, 40–79. [Google Scholar] [CrossRef]
- Bagavathiappan, S.; Saravanan, T.; Philip, J.; Jayakumar, T.; Raj, B.; Karunanithi, R.; Panicker, T.; Korath, M.P.; Jagadeesan, K. Infrared thermal imaging for detection of peripheral vascular disorders. J. Med. Phys. 2009, 34, 43. [Google Scholar]
- Abouelenien, M.; Burzo, M.; Mihalcea, R. Human acute stress detection via integration of physiological signals and thermal imaging. In Proceedings of the 9th ACM International Conference on Pervasive Technologies Related to Assistive Environments, Corfu Island, Greece, 29 June–1 July 2016; pp. 1–8. [Google Scholar]
- Hong, K.; Hong, S. Real-time stress assessment using thermal imaging. Vis. Comput. 2016, 32, 1369–1377. [Google Scholar] [CrossRef]
- Cho, Y.; Bianchi-Berthouze, N.; Julier, S.J. DeepBreath: Deep learning of breathing patterns for automatic stress recognition using low-cost thermal imaging in unconstrained settings. In Proceedings of the 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), San Antonio, TX, USA, 23–26 October 2017; pp. 456–463. [Google Scholar]
- Nakanishi, R.; Imai-Matsumura, K. Facial skin temperature decreases in infants with joyful expression. Infant Behav. Dev. 2008, 31, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Marins, J.C.B.; Moreira, D.G.; Cano, S.P.; Quintana, M.S.; Soares, D.D.; de Andrade Fernandes, A.; da Silva, F.S.; Costa, C.M.A.; dos Santos Amorim, P.R. Time required to stabilize thermographic images at rest. Infrared Phys. Technol. 2014, 65, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Ammer, K.; Ring, E. Standard procedures for infrared imaging in medicine. In Medical Devices and Systems; CRC Press: Boca Raton, FL, USA, 2006; Volume 1. [Google Scholar]
- Veltman, H.J.; Vos, W.W. Facial temperature as a measure of mental workload. In Proceedings of the 2005 International Symposium on Aviation Psychology; 2005; pp. 777–781. Available online: https://corescholar.libraries.wright.edu/isap_2005/138 (accessed on 29 December 2021).
Rank | Full Set | Rank | Thermo Set | Rank | No-Thermo Set |
---|---|---|---|---|---|
1 | TonicMean | 1 | RCheek Std | 1 | TonicMean |
2 | RPOrb Dmean | 2 | RPOrb Dmean | 2 | PhasicMean |
3 | N-Sept Dmean | 3 | Nose DMean | 3 | RESP freq |
4 | PhasicMean | 4 | LCheek Std | 4 | PksSum |
5 | PksSum | 5 | N-Sept DMean | 5 | TonicStd |
6 | PhasicStd | 6 | RPOrb Std | 6 | NPks |
7 | TonicStd | 7 | LPOrb DMean | 7 | PhasicStd |
8 | Npks | 8 | RForehead Std | 8 | SampEn |
9 | RESP freq | 9 | Forehead Std | 9 | PksMax |
10 | PksMax | 10 | std HRV | ||
11 | RCheek Std | 11 | mean HRV | ||
12 | Nose DMean | ||||
13 | SampEn | ||||
14 | std HRV | ||||
15 | RPOrb Std | ||||
16 | LPOrb DMean | ||||
17 | RForehead Std | ||||
18 | LCheek Std | ||||
19 | mean HRV | ||||
20 | Forehead Std |
Predicted Classes | |||||||
---|---|---|---|---|---|---|---|
S | N-S | S | N-S | S | N-S | ||
S | 94.74% | 5.26% | 84.21% | 15.79% | 100% | 0% | |
Actual Classes | N-S | 0% | 100% | 10.53% | 89.47% | 10.53% | 89.47% |
Full Set | Thermo Set | No-Thermo Set |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gioia, F.; Greco, A.; Callara, A.L.; Scilingo, E.P. Towards a Contactless Stress Classification Using Thermal Imaging. Sensors 2022, 22, 976. https://doi.org/10.3390/s22030976
Gioia F, Greco A, Callara AL, Scilingo EP. Towards a Contactless Stress Classification Using Thermal Imaging. Sensors. 2022; 22(3):976. https://doi.org/10.3390/s22030976
Chicago/Turabian StyleGioia, Federica, Alberto Greco, Alejandro Luis Callara, and Enzo Pasquale Scilingo. 2022. "Towards a Contactless Stress Classification Using Thermal Imaging" Sensors 22, no. 3: 976. https://doi.org/10.3390/s22030976
APA StyleGioia, F., Greco, A., Callara, A. L., & Scilingo, E. P. (2022). Towards a Contactless Stress Classification Using Thermal Imaging. Sensors, 22(3), 976. https://doi.org/10.3390/s22030976